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ABSTRACT 
This paper describes a probabilistic approach to estimate 

the conditional probability of release of hazardous materials 
from railroad tank cars during train accidents.  Monte Carlo 
methods are used in developing a probabilistic model to 
simulate head impacts.  The model is based on the physics of 
impact in conjunction with assumptions regarding the 
probability distribution functions of the various factors that 
affect the loss of lading.  These factors include impact 
velocity, indenter size, tank material, tank diameter, effective 
collision mass, and tank thickness.  Moreover, each factor is 
treated as a random variable characterized by its assumed 
distribution function, mean value, and standard deviation (or 
variance).  Reverse engineering is performed to back-calculate 
the mean values and standard deviations of these random 
variables that reproduce trends observed in available accident 
data.  The calibrated model is then used to conduct a 
probabilistic sensitivity analysis to examine the relative effect 
of these factors on the conditional probability of release.  
Results from the probabilistic sensitivity analysis indicate that 
the most significant factors that affect conditional probability 
of release are impact velocity, effective collision mass, and 
indenter size. 

INTRODUCTION 
Conditional probability is the probability that an event 

will occur given that another event has already occurred.  In 
the present context, conditional probability of release is the 
probability that release of hazardous material from a railroad 
tank car will occur given that an accident (e.g., a train 
derailment or a car-to-car collision) has already occurred. 

Estimates for conditional probability of release have been 
calculated by applying logistic regression analysis [1] to 
accident data contained in the Tank Car Accident Damage 
Database, which is maintained by the Railway Supply Institute 
and the Association of American Railroads (AAR).  These 

data have been collected since the 1960s.1  Here logistic refers 
to the functional form of the mathematical equations used to 
characterize the influence of different factors on the 
probability of lading loss during an accident.  Regression 
means that the mathematical equations were curve-fit to 
represent the data.  Lading loss is assumed to occur from four 
specific sources:  (1) releases from head impacts, (2) releases 
from shell impacts, (3) releases from top fittings, and (4) 
releases from bottom fittings.  The regression assumes that the 
most significant factors contributing to the probability of 
lading loss from each source are:  (1) whether a head shield is 
present and if so what type, (2) thickness of the tank head, (3) 
whether the tank is jacketed or not, (4) whether double-shelf 
couplers are present, (5) thickness of the tank shell, (6) 
whether the car is pressurized or not, and (7) if the accident 
occurred in a yard or on mainline track.  The results of the 
regression analysis and the trends for conditional probability 
of release based on the analysis are described in detail in 
reference [1]. 

A probabilistic approach to examine accidental releases of 
hazardous materials from tank cars is reasonable since no two 
accidents are identical.  For example, factors such as load 
severity and material properties tend to vary from one accident 
to the next.  Moreover, probabilistic analysis can account for 
randomness and uncertainty in these factors. 

A probabilistic model to predict the percentage of 
accidents that result in brittle fracture and lading loss was 
developed in the 1990s [2, 3].  The model was based on 
probabilistic fracture mechanics analysis in which a 
probability distribution was assumed for cracks or defects that 
may exist in the tank structure (presumably near welds).  
Failure by brittle fracture was assumed when the stress 
intensity factor for a given combination of accident loading 
and defect size exceeded the fracture toughness of the tank car 

                                                           
1 The database contains over 40,000 records of tank cars damaged in accidents 
[1]. 
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steel.  Subsequently the model was used to assess the potential 
safety benefit from constructing tank cars with steels 
exhibiting higher strength and toughness properties [4]. 

A probabilistic model is described in this paper that 
estimates conditional probability of release from head impacts 
without the assumption of pre-existing defects or cracks in the 
tank structure.  Failure is defined in the model as puncture of 
the commodity tank.  Moreover, accident loading and 
puncture resistance of the commodity tank are expressed in 
terms of energy quantities.  That is, puncture is assumed to 
occur when the kinetic energy associated with a given impact 
scenario exceeds the energy to puncture (i.e., resistance) for a 
given tank car configuration or design.  These energy 
quantities consist of different factors that are treated as 
random variables in the probabilistic model.  Mean values and 
standard deviations of the random variables are back-
calculated by matching the simulation results to those from the 
logistic regression of the accident data.  After the probabilistic 
model is calibrated in this manner, a probabilistic sensitivity 
analysis is performed to examine the relative effect of the 
various factors on conditional probability of release. 

PROBABILISTIC MODEL 
Figure 1 illustrates the fundamental concept in applying 

the probabilistic approach to estimate probability of failure 
[5].  The figures shows two variables; one relating to the 
demand on the system, S (e.g., load on the structure), and the 
other to the resistance of the structure, R.  Both S and R are 
considered as random variables that are characterized by their 
mean values S and R, standard deviations S and R, and 
probability density functions fS and fR.  Moreover, the overlap 
in the two probability density functions defines the probability 
of failure.  If the probability functions are known and can be 
expressed mathematically, the probability of failure can be 
calculated from the following integral 

 

( ) ( )
f S R

p f s F s


  ds  (1) 

 
where FR is the cumulative probability function representing 
the resistance of the structure.  In general, however, exact 
mathematical expressions for the probability density functions 
are unknown.  In this paper, Monte Carlo methods are used to 
evaluate the integral in equation (1) to estimate the probability 
of failure. 
 

 
Figure 1. Schematic of Probabilistic Approach 

 
In the probabilistic model described in this paper, the 

demand on the tank car during an accident is defined as the 
kinetic energy associated with the impact while the resistance 
to puncture is defined in terms of energy to puncture.  Kinetic 
energy, EK consists of two parts:  (1) effective collision mass, 
me and (2) impact velocity, vi,, and is expressed 
mathematically as 
 

21

2
K e i

E m v

c

 (2) 

 
Puncture resistance in terms of energy to cause puncture 

is assumed to comprise four parts:  (1) indenter size in terms 
of the perimeter of the contacting surface P, (2) tank material 
in terms of the ultimate tensile strength of the tank car steel 
U, (3) tank head thickness h, and (4) tank diameter D.  The 
functional form of energy to puncture is assumed as a power-
law relation: 
 

a b

P U
E CP h D  (3) 

 
where C, a, b, and c are constants to be determined. For 
dimensional consistency, 
 

3a b c    (4) 
 
The functional form of equation (3) for puncture resistance is 
similar to that assumed in semi-empirical analysis of puncture 
during excavation of pipelines [6]. 

Moreover, the factors listed in equations (2) and (3) are 
treated in the model as random variables with assumed 
probability distributions as listed in Table 1.  Appendix A lists 
the mathematical expressions for the different probability 
distributions assumed in the model. 
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Table 1. Random Variables and Assumed Distributions 
 

Random Variable Assumed Distribution 
Effective collision mass Weibull 
Impact velocity Weibull 
Indenter size Normal 
Tank material Log Normal 
Tank thickness2 Triangular or Uniform 
Tank diameter Uniform 

 
 

Figure 2 shows a schematic of the probabilistic model.  
Monte Carlo methods are used to estimate the conditional 
probability of release.  That is, the distribution of accident 
loading is calculated using equation (2) while the distribution 
for the puncture resistance of the tank structure is calculated 
using equation (3). 

 
Figure 2. Schematic of Simulation Model 

MODEL APPLICATION 
The probabilistic model is applied to produce two 

different sets of results.  In the first, tank thickness is treated 
as a deterministic variable with values ranging between 7/16 
and 1 inch.  In these cases, the model was exercised to 
simulate 100,000 accidents per thickness value.  Mean values 
and standard deviations of the various random variables were 
varied iteratively to reproduce trends observed in the available 
accident data for conditional probability of release as a 
function of thickness.  In the second set of results, tank 
thickness is treated as a random variable with an assumed 
probability distribution, and the calibrated model is then used 
to conduct a probabilistic sensitivity analysis to examine the 
relative effect of each factor (or random variable) on the 
conditional probability of release. 

 

                                                           
2  Tank thickness is a deterministic variable in the model calibration, and is 
treated as a random variable in the probabilistic sensitivity analysis. 

Table 2. Mean and Standard Deviation for Random 
Variables 

 
Random Variable Mean,  SD, 
Effective mass, lb-s2/ft 7000 2800 
Impact velocity, mph 30 10 
Indenter perimeter, inches 60 9 
Ultimate tensile strength, ksi 88.8 6.7 
Tank diameter, inches‡ 105 75 

 

Calibration with Accident Data 
Figure 3 shows the trend of conditional probability of 

release as a function of tank head thickness for head impacts 
involving tanks without head shields and without jackets.  The 
open symbols represent results from the logistic regression 
analysis of accident data [1].  The dashed lines represent the 
95 percent confidence band on the mean value determined by 
the regression analysis.  The solid symbols represent results 
from the Monte Carlo model based on the assumed probability 
distributions listed in Table 1.  Table 2 lists the mean values 
and standard deviations for the random variables assumed in 
the model to produce these results.  The values for the mean 
and standard deviation for the ultimate tensile strength are 
based on tensile strength measurements conducted on TC-
128B tank car steel by Southwest Research Institute [7].  The 
other values listed in the table are calculated from applying 
inverse or reverse engineering to match the regression results.  
In addition, the constants in equation (3); namely, C, a, b, and 
c; are calculated from reverse engineering to be equal to 74, 
1.5, 0.5, and 1.0 respectively.  The relationships between the 
mean values and standard deviations of the random variables 
and the parameters that characterize the different probability 
functions are given in Appendix A.  The results from the 
Monte Carlo simulation show a slightly stronger effect of 
thickness on conditional probability of release than the 
regression on the accident data.  Moreover, the simulation 
results are within the 95 percent confidence band for the 
available accident data over the range of thicknesses. 

Figure 4 compares the model results with the regression 
results on the accident data for head losses from jacketed tank 
cars without head shields.  The jacket thickness of 0.119 inch 
is added to the tank head thickness to produce the model 
results.  In this case, the model overestimates the conditional 
probability of release compared to the accident data for almost 
the entire range of thicknesses.  The model results are 
approximately equal to the upper-bound confidence bound at 
thicknesses slightly less than 1 inch, but generally 
overestimate the accident data trend. Similarly, Figure 5 
compares results from the model with accident data for tank 
cars with head shields and without jackets.  As in the jacketed 

                                                           
‡ Mean and standard deviation are based on uniform probability density 
function assuming a minimum tank diameter of 90 inches and a maximum of 
120 inches. 
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case, the head shield thickness of 0.5 inch is added to the head 
thickness to produce the model results.  In this case, the 
simple addition of the shield and tank head thicknesses 
produces results that are within the 95 percent confidence 
bands on observed in available data. 

Probabilistic Sensitivity Analysis 
Probabilistic sensitivity analysis is performed using the 

calibrated model for tank heads without head shields and 
without jackets to estimate the relative effect of the various 
factors assumed to affect conditional probability of release.  
Three different measures of probabilistic sensitivity are 
calculated in the present study:  (1) probabilistic importance 
factor, (2) probabilistic sensitivity with respect to changes in 
the mean value , and (3) probabilistic sensitivity with respect 
to changes in the standard deviation .  The interpretation of 
these sensitivity measures and the specific details of the 
probabilistic sensitivity analysis are described in Appendix B. 

In the probabilistic sensitivity analysis, tank thickness is 
treated as a random variable.  Moreover, two distribution 
functions are assumed for tank thickness in the sensitivity 
analysis, triangular and uniform.  Table 3 lists the mean values 
and standard deviations for the different distribution functions, 
which are based on assuming a minimum thickness of 7/16 
inch, a maximum of 1 inch, and a mode of 25/32 inch.  
Moreover, these values are calculated using equations listed in 
Appendix A for these assumed distribution functions. 
 

Table 3. Mean Values and Standard Deviations for Tank 
Thickness and Different Distribution Functions 

 
Assumed Distribution Mean,  SD, 
Triangular 0.771 0.127 
Uniform 0.719 0.026 

 
Figure 6 shows the probabilistic importance factors for 

the six random variables assumed in the Monte Carlo model to 
estimate the conditional probability of release.  Results are 
shown for the two different assumptions regarding the 
probability distribution for thickness.  Similarly, Figure 7 
shows the probabilistic sensitivities with respect to changes in 
the mean of the random variables.  Figure 8 shows the 
probabilistic sensitivities with respect to changes in standard 
deviation.  The length of the bars in these figures indicates the 
relative effect of the various random variables on the 
conditional probability of release.  For example, each measure 
of probabilistic sensitivity indicates that impact velocity has 
the most significant effect on the estimate of conditional 
probability of release. 
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Figure 3. Conditional Probability of Release for Head 

Losses (No Head Shield and No Jacket) 
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Figure 4. Conditional Probability of Release for Head 

Losses (No Head Shield, Jacketed) 
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Figure 5. Conditional Probability of Release for Head 

Losses (Head Shield, No Jacket) 
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Figure 6. Probabilistic Importance Factors 
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Figure 7. Probabilistic Sensitivity with Respect to Changes 

in Mean 
 

Random Variable

Effective mass

Impact velocity

Indenter size
Material

Thickness

Diameter

P
ro

b
ab

il
is

ti
c

 S
e

n
s

it
iv

it
y 

F
a

c
to

r

0.0

0.5

1.0

1.5

2.0

Triangular
Uniform

 
Figure 8. Probabilistic Sensitivity with Respect to Changes 

in Standard Deviation 
 

Moreover, the relative ranking of the random variables is 
consistent for each measure of probabilistic sensitivity.  
However, the ranking order between tank thickness and tank 
diameter varies depending on the assumed distribution 
function for thickness (Table 4).  Regardless of the assumed 
distribution for thickness, the probabilistic sensitivity analysis 
indicates that the three most significant factors affecting 
conditional probability of release are impact velocity, effective 
collision mass, and indenter size.  

 
Table 4. Relative Ranking of Factors Affecting Conditional 

Probability of Release 
 

 Assumed Distribution for Tank Thickness 
 Triangular Uniform 

(1) Impact velocity Impact velocity 
(2) Effective mass Effective mass 
(3) Indenter size Indenter size 
(4) Tank diameter Tank thickness 
(5) Tank thickness Tank diameter 
(6) Material Material 

DISCUSSION 
In this paper, results from the probabilistic model are 

calibrated to produce trends that are consistent with those 
observed in accident data as tank head thickness is varied.  
That is, conditional probability of release from head impacts 
tends to decrease as head thickness increases.  The calibration 
procedure entails inverse or reverse engineering to back-
calculate mean values and standard deviations for the random 
variables assumed in the model as well as constants for 
puncture energy.  Model results are within the 95 percent 
confidence bounds of the logistic regression results from the 
available accident data for tank heads without head shields 
and without jackets (Figure 3).  The effect of jackets and head 
shields is incorporated into the model by adding jacket/shield 
thickness to head thickness.  The discrepancy between model 
results and accident data for jacketed tank heads without head 
shields (Figure 4) suggests that other factors may contribute to 
the impact mechanics which have not been addressed in the 
probabilistic model.  This hypothesis, however, is not 
supported in the case of unjacketed tank heads with head 
shields where the results from the model without accounting 
for other factors are within excellent agreement with the 
accident data (Figure 5).   

Probabilistic sensitivity analysis indicates that the most 
significant factors affecting conditional probability of release 
are impact velocity, effective collision mass, and indenter size.  
The relative ranking of these factors is based upon the various 
assumptions made in developing the model, but appears 
reasonable.  For example, the strong effect of speed is 
consistent with results from a previous study on the 
quantitative estimation of risk associated with the 
transportation of hazardous materials (hazmat) by rail [8].  In 
the previous study, speed is shown to have a three-fold effect 
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on hazmat accidents.  As speed increases:  (1) the number of 
derailing cars increases, thus increasing the probability that 
hazmat cars present in the train will derail, (2) the probability 
that a derailed hazmat car will release its contents increases, 
and (3) the amount of hazmat from a releasing car increases.  
The strong effect of indenter size is consistent with results 
from deterministic sensitivity studies of puncture resistance to 
tank car shell impacts based on finite element analysis [9].  In 
addition, deterministic sensitivity analysis of pipeline puncture 
during excavations indicates that puncture is strongly 
dependent on tooth size (i.e., indenter size), pipe wall 
thickness, and material grade [10, 11]. 

Two of the three factors having the most significant effect 
of conditional probability of release; namely, effective 
collision mass and indenter size; are often unknown in actual 
accidents.  For example, in composite summaries of major 
railroad accidents involving the release of hazardous materials 
between 1969 and 1978 [12], the probable impacting object 
was reported in 22 of 75 accidents.  In these 22 accidents, 13 
were couplers, five were drawbars, two were broken rails, one 
was a wheel, and one was an end sill of a car. 

The relatively weak effect of thickness, compared to other 
factors, is examined by assuming different probability 
functions, specifically triangular and uniform.  The ranking 
order between tank thickness and tank diameter is altered 
depending on the assumed distribution, but the order of the 
three most significant factors affecting conditional probability 
of release is unchanged. 

The use of conditional probability of release as a 
performance metric stems from its direct applicability to 
perform risk assessments and cost/benefit analysis.  However, 
its usefulness may become problematic if and when enhanced 
designs that apply technologies beyond those used in currently 
accepted practice (e.g., impact energy absorbing structures) 
become practical alternatives to conventional designs.  
Estimates for the conditional probability of release of 
hazardous materials from tank car with alternative designs 
must be based on extrapolations and simplifying assumptions 
initially due to the lack of a sufficient database of accident and 
failure experience. 

Conditional probability of release considers the 
probability of lading loss but does not take into account the 
amount of lost commodity during the accidental release of 
hazardous material.  Moreover, no attempt has been made in 
this paper to examine the quantity of lading loss in accidents. 

CONCLUDING REMARKS 
This paper describes a probabilistic approach to estimate 

conditional probability of release of hazardous materials from 
tank car head impacts during accidents.  Monte Carlo methods 
are used in the model to reproduce trends that mimic those 
observed in available accident data compiled over a forty-year 
period.  A probabilistic sensitivity analysis is performed with 
the calibrated model to examine the relative effect of the 
various factors assumed in the model on conditional 

probability of release.  Sensitivity is calculated on the basis of 
three different measures.  The relative ranking of the most 
significant factors affecting conditional probability of release 
is consistent for each measure of probabilistic sensitivity.  
Moreover, results from the probabilistic sensitivity analysis 
suggest that the three most significant factors that affect 
conditional probability of release are impact velocity, effective 
collision mass, and indenter size. 
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APPENDIX A – PROBABILITY FUNCTIONS 
This appendix lists the probability density functions 

(PDF) and cumulative distribution functions (CDF) for the 
different distributions considered in the probabilistic model 
described in this paper. 

Normal Distribution 
The PDF for a normal or Gaussian distribution is 
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where  is the mean value and  is the standard deviation.  
The corresponding CDF is 
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where  is the standard error function which is defined as 
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Log Normal Distribution 
The PDF for a log normal distribution is 
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where  and  are parameters that are related to the mean  
and standard deviation   through the following equations: 
.  
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The corresponding CDF for a log normal distribution can be 
expressed in terms of the standard normal integral as 
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
 

 
  

 (A-7) 

Weibull Distribution 
The three-parameter Weibull probability distribution is 

defined as 
 

 

1

( ) exp
x x

f x

 
  

     


 

 
  

    
   
    

  (A-8) 

 
where  is called the shape parameter,   is called the scale 
parameter, and  is called the location parameter.  For a two-
parameter Weibull distribution, the location parameter  is 
equal to zero, and the Weibull shape and scale parameters are 
related to the mean value  and the standard deviation  
through the following relations: 
 

1
1 


   

 

 

  (A-9) 

 
2

2 1
1 1 

 
      

    
        

 (A-10) 

 
where  is the complete gamma function which is defined as 

  1

0

xx e d  


     (A-11) 

 
The CDF for the three-parameter Weibull distribution is 
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( ) 1 exp
x

F x




 


  



  
 
  

  (A-12) 

Triangular Distribution 
The PDF for a triangular distribution is  

 

 
  

 
  

min

min mode

mode min max min

max

mode max

max mode max min

2
if

( )
2

if

x x
x x x

x x x x
f x

x x
x x x

x x x x


 

 



 

 







 (A-13) 

 
where x must lie between xmin and xmax, and xmode is the most 
likely value.  For the triangular probability distribution, the 
mean and standard deviation are related to the minimum, 
maximum, and most likely values through the following 
equations: 
.  

 min mode max

1

3
x x x      (A-14) 

 

 2 2 2

min mode max min mode min max mode max

1

18
x x x x x x x x x         

 (A-15) 
 
The corresponding CDF for a triangular distribution is 
 

 
  

 
  

min

2

min

min mode

mode min max min

2

max

mode max

max mode max min

max

0 if

if

( )

1 if

1 if

x x

x x
x x x

x x x x
F x

x x
x x x

x x x x

x x




 

 



 

 















(A-16) 

Uniform Distribution 
The PDF for a uniform distribution is  

 

  min max

max min

1
if

16( )

0 otherwise

x x x
x xf x

 







 (A-17) 

 
The mean value and standard deviation are calculated from the 
minimum and maximum values: 
 

 min max

1

2
x x     (A-18) 

 

 21

12
max min

x x     (A-19) 

 
The corresponding CDF is 
 

min

min

min max

max min

max

0 if

( ) if

1 if

x x

x x
F x x

x x

x x
















x x   (A-20) 

APPENDIX B – PROBABILISTIC SENSITIVITY 
This appendix summarizes the concepts and describes the 

mathematical calculations that were carried out to perform the 
probabilistic sensitivity analysis in this paper. 

In probabilistic structural analysis, the measure of risk is 
commonly expressed in terms of the probability of failure.  
The probability of failure of a structure is determined from a 
specific performance criterion that depends on the relevant 
loading and structural resistance (i.e. strength) parameters that 
are treated as random variables.  A response function is 
generally defined as a function of a vector of random variables  
 

1 2
( ) ( , , )

n
Z X Z X X X   (A-21) 

 
where the Xi’s are the random variables and X represents the 
vector of random variables.  The corresponding performance 
function defines the failure surface or limit-state that 
characterizes the assumed failure criterion 
 

0
( ) 0g Z X Z   . (A-22) 

 
The performance function or limit-state function is written 
such that values of g less than zero represent failure.  
Therefore, the probability of failure is related to the 
performance function by 
 

 
( ) 0

0
X

g X

p P g f x dx


     ( )  (A-23) 

 
where fX is the joint probability density function. 

In this paper, the multiple integral in equation (A-23) is 
evaluated through Monte Carlo procedures.  Moreover, the 
performance function assumed is defined as 
 

p K
g E E   (A-24) 
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where Ep is the puncture resistance in terms of energy and EK 
is the applied accident loading in terms of kinetic energy.  The 
factors affecting energy to puncture or the resistance against 
puncture in terms of energy and their functional relation are 
expressed through the following equation 
 

a b

P U
E CP h D c  (A-25) 

 
where P is the perimeter of the indenter, U is the ultimate 
tensile strength of the tank car steel, h is the tank thickness, 
and D is the tank diameter.  In addition, C, a, b, and c are 
constants.  The functional form of this equation for puncture 
resistance is similar to that used in semi-empirical analysis of 
puncture during excavation of pipelines [6]. 

The factors affecting kinetic energy and their functional 
relation are given by 
 

21

2
e iKE m v  (A-26) 

 
where me is the effective collision mass and vi is the impact 
velocity. 

In general, the following mathematical problem must be 
solved: 
 

Minimize  2

1

n

i
i

x


   such that ( ) 0g x    (A-27) 

 
where x’ refers to the vector of reduced random variables, 
which is defined below.  Moreover, equation (A-27) is usually 
solved using nonlinear optimization methods.  Alternatively, 
the solution can be achieved iteratively by solving the 
following set of simultaneous equations in an iterative 
procedure: 
 

*

2

1
* *

i

n

i
i i

g

X X








  

   
   
   

g
 (A-28) 

 
* *

i i
x      (A-29) 

 

 * * *

1 2
,

n
g x x x     0 . (A-30) 

 
The subscript or superscript of * means that quantity or 
expression is evaluated at the design point.  Mathematically, 
equation (A-28) represents the directional cosines of the 
tangent hyperplane in the reduced coordinates.  The 
directional cosines are indicators of the sensitivity of the 
performance function to variations in the random variables. 

The following computational steps can be applied to solve 
equations (A-28) to (A-30), which is described by Ayyub and 

McCuen [13] as an advanced first-order second-moment 
(AFOSM) method: 
 
1. Assume an initial value for the design point.  In the present 
analysis, the mean values of the random variables were chosen 
as the initial guess.  The design point in the reduced 
coordinates is calculated using 
 

' i

i

i X

i i

X

x
u






x  . (A-31) 

 
2. Evaluate the directional cosines at the failure point.  The 
partial derivatives to calculate the directional cosines are 
given by 
 

* * *

i

i

X

i i i i

Xg g g

X X X X
*


  

  
    

       
       
       

 (A-32) 

 
3. Solve the following equation for the root : 
 

      
1 1 2 2

* * *

1 2
, 0

n n
X X X X X n X

g               

i

 (A-33) 

 
4. Using the value of  from step 3, evaluate a new design 
point using the following equation: 
 

* *

i
i X i X

x       (A-34) 

 
5. Repeat steps 1 to 4 until convergence of  is obtained.  The 
value of  is referred to as the reliability index. 
 
Sensitivity measures can be used to quantify the influence of 
each random variable on the probability of failure.  One 
measure of sensitivity is called the probabilistic importance 
factor, which is equivalent to the normalized gradient vector 
of the performance function in the space of the standard 
normal variables  
 

g

g






 (A-35) 

 
This equation is equivalent to the vector for the direction 
cosines of the random variables; i.e., equation (A-28).  The 
direction cosines are also related to the reliability index: 
 

*

*

i

i

i X

u

u







 


 (A-36) 

 
The vector for the probabilistic importance factors also has the 
property that 
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2 2 2

1 2
1

n
       (A-37) 

( )] ( )[
i i i

p

i

 
  

   

  
    



   
    (A-41) 

  
where n is the number of random variables. Moreover, the 
probabilistic importance factors,  i, are used as one of the 
sensitivity measures in this document to determine the relative 
ranking of the random variables in the Monte Carlo model for 
tank cars in accidents. 

where  is the standard normal probability density function.  
Then applying the chain rule of differentiation, 
 

( ) ( )i

i

i i i

up

u


     i

i

u

  

  
     

   
 (A-42) 

Two other probabilistic sensitivity measures have been 
developed by Wu [14, 15] that calculate the change in the 
probability of failure, p, with respect to changes in the mean 
value and the standard deviation of the random variables: 

 
where 
 

 
/

/i

i i

p p
S  





 (A-38) 

i

i

i i i

u

u

 
 i

i

u

  

  
 

   
 (A-43) 

 
 

/

/i

i i

p p
S  





 (A-39) 

Similarly, the derivative of equation (A-40) with respect to the 
standard deviation  is 
 

( )] ( )[
i i i

p

i

 
  

   

  
    



  
   


 (A-44) 

where i and  i are the mean and standard deviation, 
respectively, of the random variables.  The use of the standard 
deviation as a scale factor in these sensitivity measures 
implies that the allowable range of the mean value is limited 
to a local region characterized by the uncertainty of the 
random variable.  Moreover, these sensitivity measures are 
dimensionless and can take positive, negative, or zero values.  
When S is zero or relatively small, it implies that the 
corresponding random variable can be varied over a wide 
range without significantly changing the probability of failure.  
This, in turn, implies that S will be relatively small.  On the 
other hand, when S is relatively large, the corresponding S 
will also tend to be large, which suggests that S and S are 
strongly related and both can be used to identify key 
contributing random variables.  For a single limit state,  i and 
Si may be approximately proportional to  i  if ui

* are 
relatively large. 

 
Applying the chain rule, 
 

( ) ( )i

i

i i i

up

u


     i

i

u

  

  
     

   
 (A-45) 

 
where 
 

i

i

i i i

u

u

 
 i

i

u

  

  
 

   
 (A-46) 

 
Therefore, combining equations gives 
 

( )

( )i

i
i

i i

up
S

p


   i
i 

 

  
 
   

 
 
  

 (A-47) 
In order to compute S and S, equations (A-38) and 

(A-39) are expressed as follows.  The probability of failure is 
related to the reliability index through the following equation  

 
1 ( ) (p )       (A-40) 

( )

( )i

i
i

i i

up
S

p


   i
i 

 

  
 
   

 
 
  

 (A-48) 

  
where  is the standard normal cumulative probability 
function, which was defined in equation (A-3).  Equation 
(A-40) is differentiated with respect to the mean value  

Classical perturbation methods are applied to evaluate the 
partial derivatives of u with respect to the mean and standard 
deviation.

 
 


