Passenger Rail Train to Train Impact Test:
Test Procedures, Instrumentation, and Data

Office of Research and Development
Washington, D.C. 20590

DOT/FRA/ORD-03/17.III October 2003 Final Report
This document is available to the U.S. public through the National Technical Information Service
Springfield, Virginia 22161
Notice
This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

Notice
The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the objective of this report.
A full-scale passenger rail train-to-train impact test was performed on January 31, 2002, at the Transportation Technology Center, Pueblo, Colorado. The actual speed of impact, as measured by the laser speed trap, was 29.9 mph resulting in a large amount of damage to the leading cab-car, which climbed up onto the nose of the locomotive at an angle of about 20 degrees and then fell off to one side. The end-frame of the cab-car became separated from the center sill, with about 1/2 the length of the cab-car being crushed. There was very little damage to the trailing passenger cars although all of them were derailed during the impact. The nose of the locomotive received very little damage but the roof and windshield of the locomotive received some superficial damage. The locomotive and hopper cars were also derailed during the impact.
Acknowledgements

This work was performed as part of the Equipment Safety Research Program sponsored by the Office of Research and Development of the Federal Railroad Administration (FRA). Tom Tsai, Program Manager, and Claire Orth, Division Chief, Equipment and Operating Practices Division, Office of Research and Development, FRA, supported this effort. Gunars Spons, FRA’s Engineering Manager at the Transportation Technology Center, directed and coordinated the activities of all the parties involved in the test. David Tyrell, Program Manager, Volpe National Transportation Systems Center, coordinated technical requirements with the support of the American Public Transportation Association (APTA).

Simula Inc., the government’s occupant protection test contractor, executed the interior experiments.

Southeastern Pennsylvania Transit Authority (SEPTA) donated the cab-car used in the test, Long Island Railroad (LIRR) donated the M1 passenger cars and Amtrak donated the F40 locomotives.

Arthur D. Little, TIAX, designed the 1990’s end-frame attached to the front end of the cab-car.
Executive Summary

A full-scale passenger rail train to train impact test was performed on January 31, 2002, at the Federal Railroad Administration’s (FRA) Transportation Technology Center, Pueblo, Colorado, by Transportation Technology Center, Inc. (TTCI), a subsidiary of the Association of American Railroads (AAR).

The purposes of the test were to measure the colliding equipment interaction and the amount of crush between the cars; and to measure strains, accelerations, and displacements during the impact so that computational and kinematic models of the impact can be validated.

The main results of the test are:

- The speed of impact, as measured by the laser speed trap, was 29.9 mph (i.e., within 0.3% of the desired speed of 30 mph)
- There was a large amount of damage to the leading cab-car, which climbed up onto the nose of the locomotive at an angle of about 20 degrees and then fell off to one side. The impact end-frame of the cab-car was completely separated from the center sill, with 22 feet of the cab car being crushed.
- There was very little damage to the trailing passenger cars, although all of them were derailed. There was about a 2-foot offset between the leading cab-car and the 2nd passenger car and between the 2nd passenger car and the 3rd passenger car.
- The nose of the locomotive received very little damage, but the roof and windshield of the locomotive received some superficial damage. The locomotive and the hopper cars also derailed during the impact.
- The maximum longitudinal acceleration recorded on the center-sill of the lead cab-car was 258 g. When filtered using a low-pass filter with a corner frequency of 100 Hz, $F_c = 100$ Hz, the peak acceleration was reduced to 43 g.
- Those of the 2nd passenger car were 75 g and 32 g.
- Those of the 3rd passenger car were 59 g and 16 g.
- Those of the 4th passenger car were 32 g and 13 g.
- Those of the floor of the operator’s cab in the stationary locomotive were 110 g and 45 g.
- The maximum value on the center-sill stationary locomotive was over 400 g. (Filtered data was corrupted due to saturation effects)

The test was performed by colliding a passenger train made up of a Budd Company Pioneer-type cab-car, two M1 passenger cars, an instrumentation car (T-car), and a
trailing locomotive into a stationary freight train made up of a locomotive and two hopper cars.

The cab-car was fitted with a modified front end that conforms to 1990 standards. The impact locomotive had a modified hood and collision post fitted to comply with AAR Crashworthiness Standard S-580.

The seats were removed from the cab-car and the leading M1 passenger car to allow installation of two rows of seats in the cab-car and four rows of seats in the leading M1 passenger car. Anthropomorphic Test Devices (ATD’s) were installed in the cab car and leading M1 passenger car, as well as in the cab of the impact locomotive.
List of Figures

Figure 1. Precision Test Track and Impact Test Track... 2
Figure 2. Cab-Car before Impact ... 4
Figure 3. Moving Consist behind Cab-Car before Impact 4
Figure 4. Stationary Consist before Impact.. 5
Figure 5. Camera Positions ... 10
Figure 6. Cars at Moment of Impact.. 11
Figure 7. Cab-Car after Impact .. 11
Figure 8. Moving Consist after Impact ... 12
Figure 9. Cab-Car after Impact .. 12
Figure 10. Second and Third Passenger Cars after Impact................................. 13
Figure 11. Locomotive after Impact.. 14
Figure 12. Positions of Cars after Impact... 15

List of Tables

Table 1. Statistics for Longitudinal Accelerometer Data from 0 to 1s................. 7
Table 2. Statistics for Suspension Displacement Data from 0 to 1s................... 8
Table 3. Statistics for Coupler Displacement Data from 0 to 1s......................... 8
1.0 INTRODUCTION AND OBJECTIVES

Transportation Technology Center, Inc. (TTCI) performed a full-scale rail train-to-train impact test January 31, 2002, when a Budd Company Pioneer-type cab-car led train impacted a stationary Amtrak F40 locomotive led freight train at 29.9 mph. The moving consist included the cab-car, two LIRR M1 passenger cars, an instrumentation car (T-car), and a trailing Amtrak F40 locomotive. The stationary consist included a locomotive and two hopper cars, one loaded and one empty.

The purposes of the test were to measure the colliding equipment interaction and the amount of crush among the cars; and to measure strains, accelerations, and displacements during the impact so that computational and kinematic models of the colliding equipment can be validated.

2.0 DESCRIPTION OF TEST VEHICLES

The test was conducted using a Budd Company Pioneer-type cab-car provided by the Southeastern Pennsylvania Transportation Authority (SEPTA), two M1 passenger cars provided by the Long Island Railroad (LIRR), a T-car provided by the Federal Railroad Administration (FRA), two F-40 locomotives provided by Amtrak, and two hopper cars provided by the FRA.

The impact cab-car was fitted with an end-frame designed to conform to 1990 standards. Arthur D. Little, Inc. (now Tiax) designed this front end. The original seats were removed, along with other under-floor and ancillary equipment. Approximately 10,000 pounds of concrete was added, mostly under the floor in the center of the car, to make up for the weight of the missing equipment.

The seats were removed from one of the M1 cars so that the internal seat experiments could be installed, and some of the under-floor equipment was removed from both cars so that accelerometers could be mounted on the center sill. Both car bodies had some superficial damage, which was repaired and patched up with thin stainless steel sheets.

The impact locomotive was fitted with a modified hood and collision posts so that it complied with AAR Locomotive Crashworthiness Standard S-580.

The couplers were left installed at the impact ends of both the cab-car and the locomotive. Flat plates were welded to the front of each coupler in order to mount Tape Switches™ to trigger the instrumentation at impact. An instrumented coupler was fitted between the cab-car and the leading M1 car.

Simula Technologies Inc. fitted two rows of three-place M-style seats in the rear of the cab-car, two rows of two-place Amtrak Inter-city seats in the front of the leading M1 car, and two rows of three-place M-style seats in the rear of the leading M1 car. They also fitted a one-person seat in the cab of the impact locomotive. (The description of these seat experiments and the resulting data are the subject of volume II.)

A bike-rack, with a bike, was installed on a vertical face in the T-car.
The moving consist was made up of the cab-car, two M1 cars, the T-car and a trailing locomotive. It was not possible to seal all the brake pipes on the M1 cars, so none of the brakes on this consist was set to come on after impact.

The hand brakes were set during the impact on the stationary consist, which was made up of a F-40 locomotive and two hopper cars.

3.0 TEST METHODOLOGY

The test was performed at the FRA’s Transportation Technology Center (TTC), Pueblo, Colorado, according to the procedures outlined in the Test Implementation Plan for the train-to-train test, Appendix A of this report.

The Impact Test was performed by pushing the test consist with a locomotive, releasing it at a pre-determined point, then letting it run along the track into the stationary consist. The release distance and the speed of the locomotive at release were calculated from a series of speed calibration tests carried out on the Precision Test Track (PTT) and over the actual test site (Figure 1). Simulation calculations were also performed using TOEST™ (TTCI’s train action model) based on the actual track profile. The target speed for the test was 30 mph.

![Figure 1. Precision Test Track and Impact Test Track](image-url)
4.0 RESULTS

4.1 Items Measured Before The Test

4.1.1 Lengths

Moving Consist
- Length of cab-car (SEPTA245), buffer beam to buffer beam = 83.46 ft
- Length of leading M1 car (LIRR9614), buffer beam to buffer beam = 83.45 ft
- Length of trailing M1 car (LIRR9441), buffer beam to buffer beam = 83.37 ft
- Length of T-7 car, buffer beam to buffer beam = 83.64 ft
- Length of trailing locomotive (202) = 54.23 ft

Stationary Consist
- Length of stationary locomotive (234) = 53.57 ft
- Length of leading hopper car (UP32022) = 49.25 ft
- Length of trailing hopper car (UP32057) = 49.28 ft

4.1.2 Weights

Moving Consist
- Weight of cab-car (SEPTA245) = 75,014 lb
- Weight of leading M1 car (LIRR9614) = 73,427 lb
- Weight of trailing M1 car (LIRR9441) = 72,836 lb
- Weight of T-7 car = 148,944 lb
- Weight of trailing locomotive (202) = 267,054 lb

Total weight = 637,275 lb

Stationary Consist
- Weight of stationary locomotive (234) = 244,584 lb
- Weight of leading hopper car (UP32022) = 312,598 lb
- Weight of trailing hopper car (UP32057) = 78,459 lb

Total weight = 635,641 lb

(Note: The accuracy of the weigh-bridge is within 50 lb)

4.1.3 Weather Conditions

The weather conditions just before the test:
- Temperature = 32°F
- Wind speed = 7 mph from the SW

4.1.4 Photographs Taken Before Test

Photographs showing the vehicles, just before the test, are shown in Figures 2, 3, and 4.
Figure 2. Cab-Car before Impact

Figure 3. Moving Consist behind Cab-Car before Impact
4.2 ITEMS MEASURED DURING THE TEST

Speed, strain, displacement, and force were measured during the test. The test implementation plan (Appendix A) gives the number, type, and location of the transducers used for this purpose. Ruggedized, 8-channel data collection systems, known commercially as Data BRICKs, were used to collect data for this impact test. Except as noted in Section 4.2.4, all of the Data BRICKs were set to filter analog data at 1017 Hz and digitize and sample at 7945 samples-per-second or Hz.*

The following anomalies occurred with the data acquisition system:

- Three channels for the impact cab-car (B1) were not acquired due to trigger failure on Data BRICK SN90002 (C1X, AR-tapeswitch, AL-tapeswitch)
- Seven channels on the 4th passenger car (B4) were not acquired due to battery failure (C2X, C2Y, C2Z, C3X, C3Y, C3Z, BBZ)
- Eight channels for the impact cab-car were affected by periodic noise pulses that were superimposed on the valid signals. The fault was later traced to a faulty power supply module in Data BRICK SN90068 (CSR3U, CSL3U, CSR3L, CSL3L, SSR1, SSR2, SSL1, SSL2)

*Sample rate was lowered to match equipment (data BRICKs) available.
4.2.1 **Speed**

The moving consist was accelerated from rest by a locomotive and released at a point 1,500 feet from the front of the stationary locomotive. The speed of the consist just before impact, as measured by the laser based speed trap, was:

- Laser 1: 43.85 ft/s
- Laser 2: 43.85 ft/s
- Average: 43.85 ft/s = 29.9 mph

The amount of energy (E) dissipated during the impact can be calculated from the speed of the moving consist just before impact, \(V_0 = 43.85 \text{ ft/s} \), and the total weight of the moving consist, \(M_0 = 637,275 \text{ lb} \).

\[
E = \frac{1}{2} M_0 V_0^2 \\
= \frac{1}{2} \times 637,275 \times 43.85^2 / 32.2 \\
= 19.03 \times 10^6 \text{ ft.lb} \\
= 25.8 \text{ MJ}
\]

4.2.2 **Accelerations**

Acceleration was measured on each vehicle used in the test. The Test Implementation Plan (Appendix A) shows the locations of acceleration measurements for each vehicle. Raw data was filtered at 1000 Hz and digitized and sampled at 7945 samples-per-second. Data was later digitally filtered at 100 Hz and 25 Hz using the filter algorithm specified in Appendix C of SAE J-211 (Butterworth 4-pole phaseless digital filter).

Table 1 shows an overview of the longitudinal acceleration data for the test. The channel with the largest amplitude peak is shown for each car and filter frequency.
Table 1. Statistics for Longitudinal Accelerometer Data from 0 to 1s

<table>
<thead>
<tr>
<th>Car</th>
<th>Frequency</th>
<th>Channel</th>
<th>Minimum (g)</th>
<th>Maximum (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading Cab-Car</td>
<td>1000 Hz</td>
<td>B1_C3X</td>
<td>258</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>B1_L4X</td>
<td>43</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>B1_C7X</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Second Passenger Car</td>
<td>1000 Hz</td>
<td>B2_C1X</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>B2_C4X</td>
<td>32</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>B2_C4X</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>Third Passenger Car</td>
<td>1000 Hz</td>
<td>B3_C5X</td>
<td>45</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>B3_C5X</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>B3_C5X</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Fourth Passenger Car</td>
<td>1000 Hz</td>
<td>B4_C1X</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>B4_C1X</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>B4_C1X</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Trailing Locomotive</td>
<td>1000 Hz</td>
<td>BL_C3X</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>BL_C2X</td>
<td><1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>BL_C2X</td>
<td><1</td>
<td>4</td>
</tr>
<tr>
<td>Standing Locomotive</td>
<td>1000 Hz</td>
<td>SL_C1X*</td>
<td><400</td>
<td>>400</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>SL_C3X</td>
<td>115</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>SL_C3X</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>Standing Hopper 1</td>
<td>1000 Hz</td>
<td>SH1_C1</td>
<td>33</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>SH1_C1</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>SH1_C1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Standing Hopper 2</td>
<td>1000 Hz</td>
<td>SH2_C1</td>
<td>18</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>100 Hz</td>
<td>SH2_C2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>25 Hz</td>
<td>SH2_C2</td>
<td>4</td>
<td><1</td>
</tr>
</tbody>
</table>

* SL_C1X was saturated. Filtered data is corrupted due to saturation effects so the next highest locations are shown for 100 Hz and 25 Hz.

The results shown in table demonstrate that the highest magnitude accelerations were on the standing locomotive, except at the 25 Hz frequency where the second passenger car showed the highest value.

It is apparent that the magnitudes of the acceleration are very dependent on the frequency of interest. It is therefore recommended that time histories be used to compare with other test or model data. Time histories for each acceleration channel are shown in Appendix B for 1000 Hz data, Appendix C for 100 Hz data, and Appendix D for 25 Hz data.

4.2.3 Displacements

The vertical displacement across the secondary suspension of the cab-car and the two M1 cars were measured using string potentiometers between the car body and the truck. Statistics for these channels are shown in Table 2. The average of the data for the two seconds before the impact was subtracted from the data to show the nominal displacement.
Table 2. Statistics for Suspension Displacement Data from 0 to 1s

<table>
<thead>
<tr>
<th>Car</th>
<th>Location</th>
<th>Channel</th>
<th>Minimum (in)</th>
<th>Maximum (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading Cab-Car</td>
<td>A Truck Left</td>
<td>B1_AL</td>
<td>-2.72</td>
<td>4.93</td>
</tr>
<tr>
<td></td>
<td>A Truck Right</td>
<td>B1_AR</td>
<td>-2.25</td>
<td>5.13</td>
</tr>
<tr>
<td></td>
<td>B Truck Left</td>
<td>B1_BL</td>
<td>-2.49</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>B Truck Right</td>
<td>B1_BR</td>
<td>-2.61</td>
<td>3.07</td>
</tr>
<tr>
<td>Second Passenger Car</td>
<td>A Truck Left</td>
<td>B2_AL</td>
<td>-1.82</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>A Truck Right</td>
<td>B2_AR</td>
<td>-2.01</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>B Truck Left</td>
<td>B2_BL</td>
<td>-0.25</td>
<td>4.88</td>
</tr>
<tr>
<td></td>
<td>B Truck Right</td>
<td>B2_BR</td>
<td>-2.17</td>
<td>5.01</td>
</tr>
<tr>
<td>Third Passenger Car</td>
<td>A Truck Left</td>
<td>B3_AL</td>
<td>-1.40</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>A Truck Right</td>
<td>B3_AR</td>
<td>-1.24</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>B Truck Left</td>
<td>B3_BL</td>
<td>-0.05</td>
<td>2.08</td>
</tr>
<tr>
<td></td>
<td>B Truck Right</td>
<td>B3_BR</td>
<td>-0.50</td>
<td>2.63</td>
</tr>
</tbody>
</table>

The largest suspension displacements occurred on the leading cab car. The minimum displacements occurred just after impact, while the maximums occurred when the bogies were lifted from the track as the cab-car climbed onto the locomotive.

The displacements (in each direction) between the cab-car trailing end coupler and the car body, the M1 car bodies and their couplers, and the T-car leading end coupler and car body were also measured using string potentiometers. Statistics for these channels are shown in Table 3.

Table 3. Statistics for Coupler Displacement Data from 0 to 1s

<table>
<thead>
<tr>
<th>Car</th>
<th>Location</th>
<th>Channel</th>
<th>Minimum (in)</th>
<th>Maximum (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leading Cab Car</td>
<td>B Coupler Vert</td>
<td>B1_CBX</td>
<td>-1.76</td>
<td>12.48</td>
</tr>
<tr>
<td></td>
<td>B Coupler Lat</td>
<td>B1_CBY</td>
<td>-0.34</td>
<td>10.81</td>
</tr>
<tr>
<td></td>
<td>B Coupler Long</td>
<td>B1_CBZ</td>
<td>-0.49</td>
<td>9.39</td>
</tr>
<tr>
<td>Second Passenger Car</td>
<td>A Coupler Vert</td>
<td>B2_CAX</td>
<td>-1.36</td>
<td>7.11</td>
</tr>
<tr>
<td></td>
<td>A Coupler Lat</td>
<td>B2_CAY</td>
<td>-0.16</td>
<td>9.70</td>
</tr>
<tr>
<td></td>
<td>A Coupler Long</td>
<td>B2_CAZ</td>
<td>-1.42</td>
<td>3.50</td>
</tr>
<tr>
<td></td>
<td>B Coupler Vert</td>
<td>B2_CBX</td>
<td>-2.33</td>
<td>5.70</td>
</tr>
<tr>
<td></td>
<td>B Coupler Lat</td>
<td>B2_CBY</td>
<td>-1.09</td>
<td>11.52</td>
</tr>
<tr>
<td></td>
<td>B Coupler Long</td>
<td>B2_CBZ</td>
<td>-1.85</td>
<td>4.29</td>
</tr>
<tr>
<td>Third Passenger Car</td>
<td>A Coupler Vert</td>
<td>B3_CAX</td>
<td>-2.00</td>
<td>2.10</td>
</tr>
<tr>
<td></td>
<td>A Coupler Lat</td>
<td>B3_CAY</td>
<td>-0.34</td>
<td>5.39</td>
</tr>
<tr>
<td></td>
<td>A Coupler Long</td>
<td>B3_CAZ</td>
<td>-0.11</td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td>B Coupler Vert</td>
<td>B3_CBX</td>
<td>-6.11</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>B Coupler Lat</td>
<td>B3_CBY</td>
<td>-0.65</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>B Coupler Long</td>
<td>B3_CBZ</td>
<td>-1.14</td>
<td>1.55</td>
</tr>
<tr>
<td>Fourth Passenger Car</td>
<td>A Coupler Vert</td>
<td>B2_CAX</td>
<td>-0.59</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>A Coupler Lat</td>
<td>B2_CAY</td>
<td>-1.75</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td>A Coupler Long</td>
<td>B2_CAZ</td>
<td>-0.35</td>
<td>3.16</td>
</tr>
</tbody>
</table>

Coupler displacements were very large due to the action of the cars after they derailed.
For the cab-car string potentiometers, the Data Brick was set to a filter frequency of 500 Hz and a sample rate of 3,972 Hz. For the 3rd passenger car the filter frequency was 502 Hz and the sample rate was 3,981 Hz. For all other displacement measurements the Data Bricks were set to filter frequencies of 1017 Hz and sample rates of 7,945 samples/sec. For all measurements the pre-trigger time was set to 2 s and the post-trigger time to 6 s.

The Test Implementation Plan in Appendix A describes where the displacement transducers were mounted. Appendix E contains time plots of all displacement channels.

4.2.5 Longitudinal Force In Coupler

The coupler at the trailing end of the impact cab-car was strain gauged and calibrated so that the longitudinal force could be measured. The coupler force measurement saturated at a force of 919 kips about 60ms after impact. The coupler force time history is located in Appendix E.

4.2.6 Strains

Strain was measured on the leading cab-car and on the standing locomotive.

Five strain channels on the leading cab car saturated during the test. Three of these, B1_CSR3L, B1_CSL1U, and B1_CSR3U, appeared to saturate due to noise on the signal. The other two gages were B1_CSR1U, which saturated at 4825 micro-strain 0.490 seconds after impact and B1_CSR1L, which saturated at 4706 micro-strain 0.466 seconds after impact.

One strain channel on the standing locomotive, SL_MSL2U, saturated due to noise. The next highest strain reading on the locomotive was 1697 micro-strain on channel SL_MSL1U.

The Test Implementation Plan in Appendix A shows the positions of all the individual strain gauges. Time plots of the strains are shown in Appendix F.

4.2.4 Longitudinal Velocity

The x-axis acceleration time histories for all the center sill accelerometers on all the moving cars have been integrated to give velocity and then plotted against time. The Test Implementation Plan in Appendix A shows the positions of the accelerometers. Time plots of the longitudinal velocity are shown in Appendix G.

4.2.7 High Speed And Video Photography

The Impact Test was visually recorded with 10 high-speed film cameras and 14 video cameras. Camera coverage was selected to provide views of both the left and right sides of the vehicle, overhead views, and an overall view of the impact.

The film and video camera positions are shown in Figure 5.
Set-up sheets for the film camera are presented in Appendix H.

Two high-speed film cameras, F1 and F10, did not run due to a power failure.

One video camera, V9, did not run for an unknown reason.

4.3 ITEMS MEASURED AFTER THE TEST

Figure 6 shows the cars at the moment of impact. Figures 7, 8, and 9 show the cab-car and other passenger cars after impact. The second and third passenger cars after impact are shown in Figure 10. The locomotive after impact is shown in Figure 11. The relative positions of all the vehicles after impact are shown in diagrammatic form in Figure 12.
Figure 6. Cars at Moment of Impact

Figure 7. Cab-Car after Impact
Figure 10. Second and Third Passenger Cars after Impact
Figure 11. Locomotive after Impact
5.0 DISCUSSION/CONCLUSIONS

The objective of the test, to measure the interaction of the cars and the amount of crush between the cars, was met. The actual speed of impact, as measured by the laser speed trap, was 29.9 mph resulting in a large amount of damage to the leading cab-car, which climbed up onto the nose of the locomotive at an angle of about 20 degrees and then fell off to one side. The end-frame of the cab-car became separated from the center sill, with 22 feet of the cab-car being crushed. There was very little damage to the trailing coach cars although all of them were derailed during the impact. The nose of the locomotive received very little damage but the roof and windshield of the locomotive received some superficial damage. The locomotive and hopper cars were also derailed during the impact.
Appendix A

Test Implementation Plan

Test Implementation Plan for Cab-Car
To Locomotive Impact Test
1.0 Purpose
To run a cab car, four coupled passenger cars and a trailing locomotive into a stationary locomotive led freight train with two loaded hopper cars on level tangent track at an impact speed of approximately 30 mph. Computer simulations show that the “stationary” locomotive will move back 100 feet on impact, and that the leading passenger car will crush by approximately 14 feet. The cab-car, passenger cars and locomotives will be instrumented to measure material strains, structural accelerations, suspension displacements, coupler forces and coupler displacements throughout the vehicles in sufficient quantity to allow correlation with analytical predictions.

2.0 Requirements
To impact a cab-car, four coupled passenger cars and a locomotive into a stationary locomotive led freight train at an impact speed of 30 mph (+ or – 5 mph).

3.0 Test Cars
The test will be conducted using a cab-car provided by SEPTA, four passenger cars provided by Long Island Railroad and locomotives provided by AMTRAK.

The cab-car will be modified to bring it up to 1990 standards by fitting a re-designed front end. A load test will be performed on the cab-car to show that it conforms to 1990’s standards.

The stationary locomotive will be modified to bring the structure up to AAR Locomotive Crashworthiness Standard S-580. This will involve modifying the collision posts, short hood and anti-climber.

The cab-car and passenger cars will be modified internally so that a number of seat configurations can be tested. The stationary locomotive will have one interior test. All the interior experiments will be provided by Simula.

Ballast will be added to the test cab-car and passenger cars to replace the seats and other equipment removed from them before the test. The freight cars will be loaded with ballast.
4.0 Test Method

The test will be performed at the TTC by impacting the coupled passenger test cars into the stationary locomotive led freight train at a speed of 30 mph. The impact test will be carried out by pushing the test cars and trailing locomotive with another locomotive and then releasing them and allowing them to roll along the track and into the stationary locomotive and loaded freight cars. The release distance, and the speed of the locomotive at the release point, will be determined from a series of calibration runs carried out before the locomotive led freight train is put in place.

An on-board radar speed measuring system will be used for speed calibration of the test cars. The ambient temperature and wind speed will be measured during the calibration tests and during the actual test. A laser speed trap will be used to measure the speed of the test cars just before impact.

On-board instrumentation will record accelerations, displacements and strains at various points on the test cars, locomotives and freight cars during and after the impact. High speed film cameras and video cameras will be used to record both the impact between the lead cab-car and the locomotive and between the passenger cars themselves.

5.0 Measured Items

The length and weight of each vehicle will be measured before the test:

Strains and accelerations will be measured during the test using a battery powered on-board data acquisition system which will provide excitation to the strain gages and accelerometers, analog anti-aliasing filtering of the signals, analog-to-digital conversion and recording. Data acquisition will be in accordance with SAE J211/1, Instrumentation for Impact Tests (revised March 1995). Data from each channel will be recorded at a sample rate of 12,800 Hz. All data will be synchronized with a time reference applied to all systems simultaneously at the time of impact. The time reference will come from a closure of a tape switch on the front of the impacting cab-car. The following items will be measured during the test:

1. The speed of the cab-car just before impact using a laser based speed trap.
2. Longitudinal strains at draft sills and center sills of the impacting cab-car (see Figure 1)(12 strain gages)
3. Longitudinal strains at the side sills and cant rails of the impacting cab-car (see Figure 2)(12 strain gages)
4. Accelerations of draft sills, center sill and left and right side sills of the impacting cab-car (see Figure 3)(23 accelerometers)
5. Accelerations of each truck of the impacting cab-car in the longitudinal, vertical and lateral directions (6 accelerometers)
6. Accelerations of draft sills, center sill and left and right side sills of the second coach car (see Figure 4)(17 accelerometers)
7. Accelerations of each truck of the second coach car in the lateral direction (2 accelerometers)
8. Accelerations of draft sills and center sill of the third coach car (see Figure 5) (11 accelerometers)
9. Accelerations of each truck of the third coach car in the lateral direction (2 accelerometers)
10. Accelerations of center sill of the fourth coach car (see Figure 6) (9 accelerometers)
11. Accelerations of each truck of the fourth coach car in the lateral direction (2 accelerometers)
12. Accelerations of center sill of the fifth coach car (see Figure 7) (9 accelerometers)
13. Accelerations of each truck of the fifth coach car in the lateral direction (2 accelerometers)
14. Accelerations of the main sill of the trailing locomotive (see Figure 8) (9 accelerometers)
15. Accelerations of each truck of the trailing locomotive in the lateral direction (2 accelerometers)
16. Accelerations of the main sill of the stationary locomotive (see Figure 9) (9 accelerometers)
17. Accelerations of each truck of the stationary locomotive (6 accelerometers)
18. Acceleration of the Operator’s Cab of the stationary locomotive (see Figure 10) (3 accelerometers)
19. Longitudinal strains on the main sill of the stationary locomotive (see Figure 11) (12 strain gages)
20. Longitudinal accelerations of center sill of the first and second stationary freight cars (see Figure 12) (4 accelerometers)
21. Displacement across each secondary suspension of the impacting cab-car (4 string potentiometers)
22. Displacement across each secondary suspension of the first coach car (4 string potentiometers).
23. Displacement across each secondary suspension of the second coach car (4 string potentiometers)
24. Lateral and vertical displacements of couplers relative to car body between impacting cab-car and first coach car (3 string potentiometers on each coupler, i.e. total of 6 string potentiometers).
25. Lateral and vertical displacements of couplers relative to car body between first coach car and second coach car (3 string potentiometers on each coupler, i.e. total of 6 string potentiometers)
26. Lateral and vertical displacements of couplers relative to car body between second coach car and third coach car (3 string potentiometers on each coupler, i.e. total of 6 string potentiometers)
27. Longitudinal strain on coupler between impacting cab-car and first coach car (1 strain gage bridge)
28. Tape switches on each corner post of impact end of leading cab-car (2 tape switches).

This amounts to a total of 185 channels.
High-speed film cameras and video cameras will be used to record the impact. A reference signal will be placed on the film so that analysis of the film after the event will give the velocity and displacement of each vehicle during impact.

The length of each vehicle will be measured after the test.

6.0 Instrumentation
6.1 Strain measurements
6.1.1 Strain measurements, Impact Cab-Car

Figure 1 shows the general arrangement of strain gages on the Center Sill.

Table 1 lists the locations and strain gage types for all the strain gages on the center sill.

<table>
<thead>
<tr>
<th>Location</th>
<th>Strain Gage</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS-R-1-U</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>CS-L-1-U</td>
<td>Standard</td>
<td>2</td>
</tr>
<tr>
<td>CS-R-1-L</td>
<td>Standard</td>
<td>3</td>
</tr>
<tr>
<td>CS-L-1-L</td>
<td>Standard</td>
<td>4</td>
</tr>
<tr>
<td>CS-R-2-U</td>
<td>Standard</td>
<td>5</td>
</tr>
<tr>
<td>CS-L-2-U</td>
<td>Standard</td>
<td>6</td>
</tr>
<tr>
<td>CS-R-2-L</td>
<td>Standard</td>
<td>7</td>
</tr>
<tr>
<td>CS-L-2-L</td>
<td>Standard</td>
<td>8</td>
</tr>
<tr>
<td>CS-R-3-U</td>
<td>Standard</td>
<td>9</td>
</tr>
<tr>
<td>CS-L-3-U</td>
<td>Standard</td>
<td>10</td>
</tr>
<tr>
<td>CS-R-3-L</td>
<td>Standard</td>
<td>11</td>
</tr>
<tr>
<td>CS-L-3-L</td>
<td>Standard</td>
<td>12</td>
</tr>
</tbody>
</table>

Table A-1 Impact Cab-Car, Strain gage location and type, Center Sill

Figure 2 shows the general arrangement of strain gages on the Side Sill and Cant Rail.

Table 2 lists the locations and strain gage types for all the strain gages on the side sills and cant rails.

<table>
<thead>
<tr>
<th>1.1 Location</th>
<th>Strain Gage</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-R-1</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>SS-L-1</td>
<td>Standard</td>
<td>2</td>
</tr>
<tr>
<td>SS-R-2</td>
<td>Standard</td>
<td>3</td>
</tr>
<tr>
<td>SS-L-2</td>
<td>Standard</td>
<td>4</td>
</tr>
<tr>
<td>SS-R-3</td>
<td>Standard</td>
<td>5</td>
</tr>
<tr>
<td>SS-R-3</td>
<td>Standard</td>
<td>6</td>
</tr>
<tr>
<td>CR-R-1</td>
<td>Standard</td>
<td>7</td>
</tr>
<tr>
<td>CR-L-1</td>
<td>Standard</td>
<td>8</td>
</tr>
<tr>
<td>CR-R-2</td>
<td>Standard</td>
<td>9</td>
</tr>
<tr>
<td>CR-L-2</td>
<td>Standard</td>
<td>10</td>
</tr>
<tr>
<td>CR-R-3</td>
<td>Standard</td>
<td>11</td>
</tr>
<tr>
<td>CR-L-3</td>
<td>Standard</td>
<td>12</td>
</tr>
</tbody>
</table>

Table A-2 Impact Cab-Car, Strain gage location and type, Side Sill and Cant Rail
6.1.2 Strain Measurements, Stationary Locomotive

Figure 11 shows the general arrangement of strain gages on the Main Sill of the Locomotive.

Table 3 lists the locations and strain gage types for all the strain gages on the main sill of the locomotive.

<table>
<thead>
<tr>
<th>Location</th>
<th>Strain Gage</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-R-1-U</td>
<td>Standard</td>
<td>1</td>
</tr>
<tr>
<td>MS-L-1-U</td>
<td>Standard</td>
<td>2</td>
</tr>
<tr>
<td>MS-R-1-L</td>
<td>Standard</td>
<td>3</td>
</tr>
<tr>
<td>MS-L-1-L</td>
<td>Standard</td>
<td>4</td>
</tr>
<tr>
<td>MS-R-2-U</td>
<td>Standard</td>
<td>5</td>
</tr>
<tr>
<td>MS-L-2-U</td>
<td>Standard</td>
<td>6</td>
</tr>
<tr>
<td>MS-R-2-L</td>
<td>Standard</td>
<td>7</td>
</tr>
<tr>
<td>MS-L-2-L</td>
<td>Standard</td>
<td>8</td>
</tr>
<tr>
<td>MS-R-3-U</td>
<td>Standard</td>
<td>9</td>
</tr>
<tr>
<td>MS-L-3-U</td>
<td>Standard</td>
<td>10</td>
</tr>
<tr>
<td>MS-R-3-L</td>
<td>Standard</td>
<td>11</td>
</tr>
<tr>
<td>MS-L-3-L</td>
<td>Standard</td>
<td>12</td>
</tr>
</tbody>
</table>

Table A-3. Stationary Locomotive, Strain gage location and type, MainSill

6.1.3 Coupler Force

The coupler will be strain gauged with a single gage bridge measuring the longitudinal force.

6.2 Acceleration measurements

The car-bodies gross and flexible motions will be measured using accelerometers. The gross motions of the car-bodies are the longitudinal, lateral, and vertical translational displacements, as well as the pitch, yaw and roll angular displacements. The flexible modes include vertical and lateral bending as well as torsional displacement about axis of the body. Measurements of these motions are required to fully characterize the secondary collision environment.

All the accelerometers are critically damped. The accelerometers will be calibrated prior to installation. The accelerometers posses natural frequencies sufficiently high to meet the requirements of SAE J211/1, Instrumentation for Impact Test (Revised MAR95), class 1000, which requires that the frequency response is essentially flat to 1000 Hz.

6.2.1 Accelerometer measurements, Impact Cab-Car

Figure 3 shows the general arrangement of accelerometers on the Impact Cab-Car.

Table 4 lists the accelerometer locations, accelerometer types, and data channels for the Impact Cab-Car.
<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>1 1,000G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Longitudinal X</td>
<td>2 1,000G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>3 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>4 400G</td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>5 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>6 400G</td>
</tr>
<tr>
<td>C-3</td>
<td>Two axis</td>
<td>Longitudinal X</td>
<td>7 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>8 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>9 200G</td>
</tr>
<tr>
<td>C-4</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>10 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>11 200G</td>
</tr>
<tr>
<td>C-5</td>
<td>Two axis</td>
<td>Longitudinal X</td>
<td>12 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>13 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>14 200G</td>
</tr>
<tr>
<td>C-6</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>15 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>16 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>17 400G</td>
</tr>
<tr>
<td>C-7</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>18 400G</td>
</tr>
<tr>
<td>R-2</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>19 200G</td>
</tr>
<tr>
<td>R-4</td>
<td>Two axis</td>
<td>Longitudinal X</td>
<td>20 400G</td>
</tr>
<tr>
<td>R-6</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>21 400G</td>
</tr>
<tr>
<td>L-2</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>22 200G</td>
</tr>
<tr>
<td>L-4</td>
<td>Two axis</td>
<td>Longitudinal X</td>
<td>23 400G</td>
</tr>
<tr>
<td>L-6</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>24 200G</td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>25 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>26 400G</td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>27 400G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>28 100G</td>
</tr>
</tbody>
</table>

Table A-4 Impact Cab-Car, Accelerometers

6.2.2 Accelerometer measurements, Second Coach Car

Figure 4 shows the general arrangement of accelerometers on the Second Coach Car.

Table 5 lists the accelerometer locations, accelerometer types, and data channels for the Second Coach Car.
<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>1 200G</td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>2 200G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>3 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>4 200G</td>
</tr>
<tr>
<td>C-3</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>5 200G</td>
</tr>
<tr>
<td>C-4</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>6 200G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>7 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>8 200G</td>
</tr>
<tr>
<td>C-5</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>9 200G</td>
</tr>
<tr>
<td>C-6</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>10 200G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>11 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>12 100G</td>
</tr>
<tr>
<td>C-7</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>13 200G</td>
</tr>
<tr>
<td>R-4</td>
<td>Two axis</td>
<td>Longitudinal X</td>
<td>14 200G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>15 100G</td>
</tr>
<tr>
<td>L-4</td>
<td>Two axis</td>
<td>Longitudinal X</td>
<td>16 200G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>17 100G</td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>18 100G</td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>19 100G</td>
</tr>
</tbody>
</table>

Table A-5 Second Coach Car, Accelerometers

6.2.3 Accelerometer measurements, Third Coach Car

Figure 5 shows the general arrangement of accelerometers on the Third Coach Car.

Table 6 lists the accelerometer locations, accelerometer types, and data channels for the Third Coach Car.

<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>1 100G</td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>2 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>3 25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>4 50G</td>
</tr>
<tr>
<td>C-3</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>5 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>6 25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Z</td>
<td>7 50G</td>
</tr>
<tr>
<td>C-4</td>
<td>Three axis</td>
<td>Longitudinal X</td>
<td>8 100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y</td>
<td>9 25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z</td>
<td>10 50G</td>
</tr>
<tr>
<td>C-5</td>
<td>Single axis</td>
<td>Longitudinal X</td>
<td>11 100G</td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>12 50G</td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z</td>
<td>13 50G</td>
</tr>
</tbody>
</table>

Table A-6 Third Coach Car, Accelerometers

6.2.4 Accelerometer measurements, Fourth Coach Car

Figure 6 shows the general arrangement of accelerometers on the Fourth Coach Car.
Table 7 lists the accelerometer locations, accelerometer types, and data channels for the Fourth Coach Car.

<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Three axis</td>
<td>Longitudinal X 1</td>
<td>100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 2</td>
<td>25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 3</td>
<td>50G</td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X 4</td>
<td>100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 5</td>
<td>25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 6</td>
<td>50G</td>
</tr>
<tr>
<td>C-3</td>
<td>Three axis</td>
<td>Longitudinal X 7</td>
<td>100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 8</td>
<td>25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 9</td>
<td>50G</td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z 10</td>
<td>50G</td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z 11</td>
<td>50G</td>
</tr>
</tbody>
</table>

Table A-7 Fourth Coach Car, Accelerometers

6.2.5 Accelerometer measurements, Fifth Coach Car

Figure 7 shows the general arrangement of accelerometers on the Fifth Coach Car.

Table 8 lists the accelerometer locations, accelerometer types, and data channels for the Fifth Coach Car.

<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Three axis</td>
<td>Longitudinal X 1</td>
<td>100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 2</td>
<td>25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 3</td>
<td>50G</td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X 4</td>
<td>100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 5</td>
<td>25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 6</td>
<td>50G</td>
</tr>
<tr>
<td>C-3</td>
<td>Three axis</td>
<td>Longitudinal X 7</td>
<td>100G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 8</td>
<td>25G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 9</td>
<td>50G</td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z 10</td>
<td>50G</td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z 11</td>
<td>50G</td>
</tr>
</tbody>
</table>

Table A-8 Fifth Coach Car, Accelerometers

6.2.6 Accelerometer measurements, Trailing Locomotive

Figure 8 shows the general arrangement of accelerometers on the Trailing Locomotive.

Table 9 lists the accelerometer locations, accelerometer types, and data channels for the Trailing Locomotive.
<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Three axis</td>
<td>Longitudinal X 1 100G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 2 25G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 3 50G</td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X 4 100G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 5 25G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 6 50G</td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>Three axis</td>
<td>Longitudinal X 7 100G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 8 25G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 9 50G</td>
<td></td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z 10 50G</td>
<td></td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Single axis</td>
<td>Vertical Z 11 50G</td>
<td></td>
</tr>
</tbody>
</table>

Table A-9 Trailing Locomotive, Accelerometers

6.2.7 Accelerometer measurements, Stationary Locomotive

Figure 9 shows the general arrangement of accelerometers on the Trailing Locomotive.

Table 10 lists the accelerometer locations, accelerometer types, and data channels for the Trailing Locomotive.

<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Three axis</td>
<td>Longitudinal X 1 400G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 2 200G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 3 400G</td>
<td></td>
</tr>
<tr>
<td>C-2</td>
<td>Three axis</td>
<td>Longitudinal X 4 400G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 5 200G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 6 400G</td>
<td></td>
</tr>
<tr>
<td>C-3</td>
<td>Three axis</td>
<td>Longitudinal X 7 400G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lateral Y 8 200G</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vertical Z 9 400G</td>
<td></td>
</tr>
<tr>
<td>B-1 (Bogie)</td>
<td>Three axis</td>
<td>Longitudinal X 10 400G</td>
<td></td>
</tr>
<tr>
<td>B-2 (Bogie)</td>
<td>Three axis</td>
<td>Longitudinal X 13 400G</td>
<td></td>
</tr>
<tr>
<td>Operator’s Cab</td>
<td>Three axis</td>
<td>Longitudinal X 16 400G</td>
<td></td>
</tr>
</tbody>
</table>

Table A-10 Stationary Locomotive, Accelerometers

6.2.8 Accelerometer measurements, First Stationary Freight Car

Figure 10 shows the general arrangement of accelerometers on the First Stationary Freight Car.
Table 11 lists the accelerometer locations, accelerometer types, and data channels for the First Stationary Freight Car.

<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Single axis</td>
<td>Longitudinal</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100G</td>
</tr>
<tr>
<td>C-2</td>
<td>Single axis</td>
<td>Longitudinal</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100G</td>
</tr>
</tbody>
</table>

Table A-11 First Stationary Freight Car, Accelerometers

6.2.9 Accelerometer measurements, Second Stationary Freight Car

Figure 10 shows the general arrangement of accelerometers on the Second Stationary Freight Car.

Table 12 lists the accelerometer locations, accelerometer types, and data channels for the Second Stationary Freight Car.

<table>
<thead>
<tr>
<th>Location</th>
<th>Accelerometer</th>
<th>Measurement</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>Single axis</td>
<td>Longitudinal</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100G</td>
</tr>
<tr>
<td>C-2</td>
<td>Single axis</td>
<td>Longitudinal</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100G</td>
</tr>
</tbody>
</table>

Table A-12 Second Stationary Freight Car, Accelerometers

6.3 String Potentiometers

Four string potentiometers will be fixed across each secondary suspension on the impacting cab-car, second coach car and third coach car between body bolster and bogie bolster to measure the relative vertical displacement (Total of 12 string potentiometers).

Six string potentiometers will be fixed between the couplers and car bodies of the impacting cab-car and second coach car, between the second coach car and third coach car and between the third coach car and fourth coach car, to measure lateral and vertical displacements (Total of 18 potentiometers).

6.4 High-speed and real-time photography

Ten high-speed film cameras and fourteen video cameras will document the impact test. The cameras will be located either side of the impact point between the cab-car and the locomotive and either side of the intersection between the impact cab-car and first coach car, the first coach car and second coach car and second coach car and third coach car. Other cameras will be located looking along the passenger train and looking down on the impact point from overhead. All the cameras are equipped with sights that allow the photographer to view the expected image. The final siting of cameras will be carried out at the time of camera setup. Adjustments will be made, if necessary, to achieve the optimum views.

A 100 Hz reference signal will be placed on the film so that accurate frame speed can be determined for film analysis. An electronic signal generator provides the calibrated 100-Hz pulse train to light emitting diodes (LEDs) in the high-speed cameras. Illumination of
the LEDs exposes a small red dot on the edge of the film, outside the normal field of view. During film analysis, the precise film speed is determined from the number of frames and fractions thereof that pass between two adjacent LED marks. Battery powered on-board lights will illuminate the on-board camera view. Battery packs use 30-v NiCad batteries.

Color negative film for the ground-based cameras will be Kodak 16-mm 7246, ISO 250, for daylight on 100-ft spools. Film speed will be pushed in processing if necessary to compensate for light conditions at test time.

Four-inch diameter targets will be placed on the vehicles and the ground to facilitate post-test film analysis to determine speed and displacement during the test. The targets are divided into four quadrants with adjacent colors contrasting to provide good visibility. At least three targets will be placed on each side of each vehicle and the ground. During film analysis, the longitudinal and vertical coordinates of the targets are determined from projections on a film analyzer on a frame-by-frame basis. The distances between the targets, which are known from pre-test measurements, provide distance reference information for the film analysis. The differences in locations between vehicle-mounted targets and ground-based targets quantify the motion of the vehicle during the test. By taking the position differences between vehicle-mounted and ground-based targets, the effects of film registration jitter in the high-speed cameras are minimized. The 100-Hz LED reference marks provide an accurate time base for the film analysis. Test vehicle position is determined directly as indicated above, and vehicle speed is determined by dividing the displacement between adjacent frames by the time difference between the adjacent frames. If necessary, smoothing is applied to the displacement and speed data to compensate for digitization and other uncertainties.

The ground-based cameras will be started simultaneously from a central relay box triggered manually. The cameras running at a nominal speed of 500 frames per second will run for about eight seconds before the 100-ft film is entirely exposed.

6.5 Data Acquisition
Twenty-five, 8-channel battery-powered on-board data acquisition systems will provide excitation to the strain gages and accelerometers, analog anti-aliasing filtering of the signals, analog-to-digital conversion, and recording. Data acquisition will be in compliance with SAE J211. Data from each channel will be recorded at 12,800 Hz. Parallel redundant systems will be used for all accelerometer channels. Data recorded on the four systems will be synchronized with a time reference applied to all systems simultaneously at the time of impact. The time reference will come from closure of the tape switches on the front of the test vehicle. The data acquisition systems are GMH Engineering Data Brick Model II. Each Data Brick is ruggedized for shock loading up to at least 100 g. On-board battery power will be provided by GMH Engineering 1.7 A-HR 14.4 volt NiCad Packs. Tape Switches, Inc., model 1201-131-A tape switches will provide event markers.
Software in the Data Brick will be used to determine zero levels and calibration factors rather than relying on set gains and expecting no zero drift.

6.6 Tape Switches
Tape Switches will be installed on the coupler of the impacting cab-car and the coupler of the locomotive. Closure of these switches at impact will indicate contact between the cab-car and locomotive. The switch closures will trigger each Data Brick. The tape switches are manufactured by the Tapeswitch Corporation, model 1201-131-A.

Tape switches will also be mounted on the corner posts of the impacting cab-car to indicate the time of contact with the locomotive.

6.7 Speed Trap
A dual channel speed trap will accurately measure the impact speed of the cab-car when it is within 0.5 meter of the locomotive. The speed trap is a GMH Engineering Model 400, 4 Interval Precision Speed Trap with an accuracy of 0.1%. Passage of a rod affixed to the vehicle will interrupt laser beams a fixed and known distance apart. The first interruption starts a precision counter, and the second interruption stops the counter. Speed is calculated from distance and time. Tentatively, the rod will be attached at the aft end of the impact cab-car. Final rod location will be determined prior to installation.

7.0 Test Procedure
(1) The lead cab-car will be modified to bring it up to current FRA standards by strengthening the corner posts and collision posts.
(2) The stationary locomotive will be modified to bring the structure up to AAR Locomotive Crashworthiness Standard S-580. This will involve modifying the collision posts, short hood and anti-climber.
(3) The cab-car and passenger cars will be modified internally with the appropriate seating arrangements required for the test.
(4) Strain gages will be attached on the center sills, side sills and cant rails of the cab-car bodies.
(5) Strain gages will be attached to the stationary locomotive.
(6) The coupler will be strain gauged with a single gage bridge measuring the longitudinal force.
(6) Speed calibration runs will be carried out using the test cars. The test cars will pushed by a locomotive and then released at points of varying distance from the impact point. The speed of the test cars will be measured as they pass the impact point, using a laser speed trap. These runs will be carried out at different ambient temperatures and wind speeds. Having passed the impact point, the test cars will be stopped by a locomotive catching them up, catching the coupler, and then slowing down and bringing the cars back to the start point. A calibration chart of speed versus distance for different ambient temperatures and wind speeds will be produced from these tests.
(7) The test equipment, including the accelerometers and data acquisition system will be mounted on the test vehicles. The strain gages will be connected to the data acquisition system and tested.
(8) The cameras will be set up.
(9) The length and weight of each vehicle will be measured just prior to the test.
(10) All instruments will be calibrated and a zero reading carried out.
(11) A trial low speed soft impact (less than 1 mph) of the test cars will be carried out into the locomotive to confirm all the instruments work properly.
(12) The instruments will be re-calibrated, the Tape Switches replaced and the test cars pulled back.
(13) The test cars will pushed by a locomotive and released at the appropriate distance from the stationary locomotive, triggering the cameras just before impact.
(14) The instrumentation will be triggered on impact.
(15) Visual inspection of the car bodies will be carried out after impact. Still photographs will be taken of all the vehicles.
(16) The data will be downloaded onto lap-top computers from the on-board data acquisition system.

A checklist will be utilized for the actual test, based on the above list, which will be signed by key personnel as each task is completed.

8.0 Data Analysis
8.1 Data Post Processing
Each data channel will be offset adjusted in post processing. The procedure is to average the data collected just prior to the test vehicle’s impact with the barrier and subtract the offset from the entire data set for each channel. It is expected that between 0.05 and 0.50 s of pre-impact data will be averaged to determine the offsets. The precise duration of the averaging period cannot be determined with certainty until the data are reviewed. The offset adjustment procedure assures that the data plotted and analyzed contains impact-related accelerations and strains but not electronic offsets or steady biases in the data. The post-test offset adjustment is independent of, and in addition to, the pre-test offset adjustment made by the data acquisition system.

Plots of all data channels recorded and combinations of data channels will be produced as described below. Post-test filtering of the data will be accomplished with a two-pass phaseless four-pole digital filter algorithm consistent with the requirements of SAE J211. In the filtering process, data are first filtered in the forward direction with a two-pole filter. The first pass of the filtering process introduces a phase lag in the data. In the next pass, the data are filtered in the reverse direction with the same filter. Because the data are filtered in the reverse direction, a phase lead is introduced into the data. The phase lead of the reverse-direction filtering cancels the phase lag from the forward-direction filtering. The net effect is to filter the data without a change in phase with a four-pole filter.

8.2 Data Output
Every channel as recorded (raw data) will be plotted against time
The acceleration records during the impacts will be plotted against time
The longitudinal acceleration will be integrated and the derived velocity plotted against time.
The longitudinal velocity will be integrated to give the crush displacement against time. The longitudinal accelerations at the center of gravity of the car body will be averaged and multiplied by the mass of the car body to give the force against time during the impact.

The strain gage time histories will be presented
All data recorded by the Data Bricks, and the derived values mentioned above, will be presented to the FRA in digital form on a Zip disc as well as on paper.

The film from each side camera will be analyzed frame by frame and the velocity during the impact calculated. A 100 Hz reference signal will be placed on the film so that accurate frame speed can be determined for film analysis. An electronic signal generator provides the calibrated 100-Hz pulse train to light emitting diodes (LEDs) in the high-speed cameras. Illumination of the LEDs exposes a small red dot on the edge of the film, outside the normal field of view. During film analysis, the precise film speed is determined from the number of frames and fractions thereof that pass between two adjacent LED marks.

All the data output described in this section will be presented in a report and submitted to the FRA. The report will also contain general information about the crash test and describe how it was conducted.

9.0 Safety
All Transportation Technology Center, Inc. (TTCI) safety rules will be observed during the preparation and performance of the crash tests. All personnel participating in the tests will be required to comply with these rules when visiting the TTC, including wearing appropriate personal protective equipment. A safety briefing for all test personnel and visitors will be held prior to testing.
1st Cab Car
Strain Gages

Strain Gage Locations
Cab Car, Both Ends and Middle, Center Sill

Strain Gages

Center Sill
CS-L-1-U
CS-R-1-U
CS-L-1-L
CS-R-1-L

Draft Sill

End View
Cross Section

Note: (4 Data Channels per center sill location)
12 Total Channels

Draft Sill and Center Sill
(right side shown)

1st Cab Car
Strain Gages

Strain Gage Locations
Cab Car, Both Ends and Middle,
Side Sill and Cant Rail

Strain Gages

Cant Rail

Note: (2 Data Channels per Cant Rail Location)
6 Total Channels

Side Sill
(right side shown)

1938gages.ppt
1st Cab Car
Accelerometers

Two-axis (Longitudinal and Vertical) Accelerometer Locations (8 ch.)
Three-axis Accelerometer Locations (9 ch.)
Single-axis (vertical) Accelerometer Locations (4 ch.)
Single-axis (longitudinal) Accelerometer Locations (2 ch.)

Note: (23 Car body / 6 truck)
29 total Data Channels

2nd Coach Car
Accelerometers

Two-axis (Longitudinal and Vertical) Accelerometer Locations (4 ch.)
Three-axis Accelerometer Locations (9 ch.)
Single-axis (longitudinal) Accelerometer Locations (4 ch.)

Note: (17 Car body / 2 truck)
19 total Data Channels
3rd Coach Car
Accelerometers

- Three-axis Accelerometer Locations (9 ch.)
- Single-axis (longitudinal) Accelerometer Locations (2 ch.)

Note: (11 Car body / 2 truck)
13 total Data Channels

Underframe
Plan View

Figure 5

4th Coach Car
Accelerometers

- Three-axis Accelerometer Locations (9 ch.)

Note: (9 Car body / 2 truck)
11 total Data Channels

Underframe
Plan View

Figure 6
5th Coach Cars
Accelerometer

Note: (9 Car body / 2 truck)
11 total Data Channels

Pushing Locomotive Frame
Accelerometers

Note: (9 Car body / 2 truck)
11 total Data Channels
Standing Locomotive Frame
Accelerometers

Impacting End
End Plate
Main Sill
Draft Gear Pocket

Three-axis Accelerometer Locations (9 ch.)

Note: 9 Loco/6 Truck
15 Total Data Channels

Figure 9

Standing Locomotive Operator's Cab
Accelerometer

Sub-base Structure

Three-axis Accelerometer Locations (3 ch.)

Note: 3 Total Data Channels

Figure 10
Standing Locomotive Strain Gages

Strain Gage Location Locomotive Main Sill

End View
Cross Section

Collision Posts

Draft Gear Housing

Elevation View
(right side shown)

Note: 12 Total Data Channels

Figure 11

1st, 2nd, and 3rd Standing Car

Accelerometers

Single-axis (longitudinal) Accelerometer Locations (2 ch.)

Note: (2 per Car body)
2 total Data Channels

Underframe Plan View

Figure 12
APPENDIX B

Acceleration Data, $F_c = 1000$ Hz
Figure B1. Bullet car 1. A truck, longitudinal acceleration
Channel Name: B1_BAX

Figure B2. Bullet car 1. A truck, lateral acceleration
Channel Name: B1_BAY
Figure B3. Bullet car 1, A truck, vertical acceleration
Channel Name: B1_BAZ

Figure B4. Bullet car 1, B truck, longitudinal acceleration
Channel Name: B1_BBX
Figure B5. Bullet car 1, B truck, lateral acceleration
Channel Name: B1_BBY

Figure B6. Bullet car 1, B truck, vertical acceleration
Channel Name: B1_BBZ
Figure B7. Bullet car 1, position 2, center sill, longitudinal acceleration
Channel Name: B1_C2X

Figure B8. Bullet car 1, position 2, center sill, lateral acceleration
Channel Name: B1_C2Y
Figure B9. Bullet car 1, position 2, center sill, vertical acceleration
Channel Name: B1_C2Z

Figure B10. Bullet car 1, position 3, center sill, longitudinal acceleration
Channel Name: B1_C3X
Figure B11. Bullet car 1, position 3, center sill, vertical acceleration
Channel Name: B1_C3Z

Figure B12. Bullet car 1, position 4, center sill, longitudinal acceleration
Channel Name: B1_C4X
Figure B13. Bullet car 1, position 4, center sill, lateral acceleration
Channel Name: B1_C4Y

Figure B14. Bullet car 1, position 4, center sill, vertical acceleration
Channel Name: B1_C4Z
Figure B15. Bullet car 1, position 5, center sill, longitudinal acceleration
Channel Name: B1_C5X

Figure B16. Bullet car 1, position 5, center sill, vertical acceleration
Channel Name: B1_C5Z
Figure B17. Bullet car 1, position 6, center sill, longitudinal acceleration
Channel Name: B1_C6X

Figure B18. Bullet car 1, position 6, center sill, lateral acceleration
Channel Name: B1_C6Y
Figure B19. Bullet car 1, position 6, center sill, vertical acceleration
Channel Name: B1_C6Z

Figure B20. Bullet car 1, position 7, center sill, longitudinal acceleration
Channel Name: B1_C7X
Figure B21. Bullet car 1, position 2, left side, vertical acceleration
Channel Name: B1_L2Z

Figure B22. Bullet car 1, position 4, left side, longitudinal acceleration
Channel Name: B1_L4X
Figure B23. Bullet car 1, position 4, left side, vertical acceleration
Channel Name: B1_L4Z

Figure B24. Bullet car 1, position 6, left side, vertical acceleration
Channel Name: B1_L6Z
Figure B25. Bullet car 1, position 2, right side, vertical acceleration
Channel Name: B1_R2Z

Figure B26. Bullet car 1, position 4, right side, longitudinal acceleration
Channel Name: B1_R4X
Figure B27. Bullet car 1, position 4, right side, vertical acceleration
Channel Name: B1_R4Z

Figure B28. Bullet car 1, position 6, right side, vertical acceleration
Channel Name: B1_R6Z
Figure B29. Bullet car 2, A truck, vertical acceleration
Channel Name: B2_BAZ

Figure B30. Bullet car 2, B truck, vertical acceleration
Channel Name: B2_BBZ
Figure B31. Bullet car 2, position 1, center sill, longitudinal acceleration
Channel Name: B2_C1X

Figure B32. Bullet car 2, position 2, center sill, longitudinal acceleration
Channel Name: B2_C2X

F_c = 1000 Hz
Figure B33. Bullet car 2, position 2, center sill, lateral acceleration
Channel Name: B2_C2Y

Figure B34. Bullet car 2, position 2, center sill, vertical acceleration
Channel Name: B2_C2Z
Figure B35. Bullet car 2, position 3, center sill, longitudinal acceleration
Channel Name: B2_C3X

Figure B36. Bullet car 2, position 4, center sill, longitudinal acceleration
Channel Name: B2_C4X
Figure B37. Bullet car 2, position 4, center sill, lateral acceleration
Channel Name: B2_C4Y

Figure B38. Bullet car 2, position 4, center sill, vertical acceleration
Channel Name: B2_C4Z
Figure B39. Bullet car 2, position 5, center sill, longitudinal acceleration
Channel Name: B2_C5X

Figure B40. Bullet car 2, position 6, center sill, longitudinal acceleration
Channel Name: B2_C6X
Figure B41. Bullet car 2, position 6, center sill, lateral acceleration
Channel Name: B2_C6Y

Figure B42. Bullet car 2, position 6, center sill, vertical acceleration
Channel Name: B2_C6Z
Figure B43. Bullet car 2, position 7, center sill, longitudinal acceleration
Channel Name: B2_C7X

Figure B44. Bullet car 2, position 4, left side, longitudinal acceleration
Channel Name: B2_L4X
Figure B45. Bullet car 2, position 4, left side, vertical acceleration
Channel Name: B2_L4Z

Figure B46. Bullet car 2, position 4, right side, longitudinal acceleration
Channel Name: B2_R4X
Figure B47. Bullet car 2, position 4, right side, vertical acceleration
Channel Name: B2_R4Z

Figure B48. Bullet car 3, A truck, vertical acceleration
Channel Name: B3_BAZ
Figure B49. Bullet car 3, B truck, vertical acceleration
Channel Name: B3_BBZ

Figure B50. Bullet car 3, position 1, center sill, longitudinal acceleration
Channel Name: B3_C1X
Figure B51. Bullet car 3, position 2, center sill, longitudinal acceleration
Channel Name: B3_C2X

Figure B52. Bullet car 3, position 2, center sill, lateral acceleration
Channel Name: B3_C2Y
Figure B53. Bullet car 3, position 2, center sill, vertical acceleration
Channel Name: B3_C2Z

Figure B54. Bullet car 3, position 3, center sill, longitudinal acceleration
Channel Name: B3_C3X
Figure B55. Bullet car 3, position 3, center sill, lateral acceleration
Channel Name: B3_C3Y

Figure B56. Bullet car 3, position 3, center sill, vertical acceleration
Channel Name: B3_C3Z
Figure B57. Bullet car 3, position 4, center sill, longitudinal acceleration
Channel Name: B3_C4X

Figure B58. Bullet car 3, position 4, center sill, lateral acceleration
Channel Name: B3_C4Y
Figure B59. Bullet car 3, position 4, center sill, vertical acceleration
Channel Name: B3_C4Z

Figure B60. Bullet car 3, position 5, center sill, longitudinal acceleration
Channel Name: B3_C5X
Figure B61. Bullet car 4, A truck, vertical acceleration
Channel Name: B4_BAZ

Figure B62. Bullet car 4, position 1, center sill, longitudinal acceleration
Channel Name: B4_C1X

B-32
Figure B63. Bullet car 4, position 1, center sill, lateral acceleration
Channel Name: B4_C1Y

Figure B64. Bullet car 4, position 1, center sill, vertical acceleration
Channel Name: B4_C1Z
Figure B65. Bullet locomotive, A truck, vertical acceleration
Channel Name: BL_BAZ

Figure B66. Bullet locomotive, B truck, vertical acceleration
Channel Name: BL_BBZ
Figure B67. Bullet locomotive, position 1, center sill, longitudinal acceleration
Channel Name: BL_C1X

Figure B68. Bullet locomotive, position 1, center sill, lateral acceleration
Channel Name: BL_C1Y
Figure B69. Bullet locomotive, position 1, center sill, vertical acceleration
Channel Name: BL_C1Z

Figure B70. Bullet locomotive, position 2, center sill, longitudinal acceleration
Channel Name: BL_C2X
Figure B71. Bullet locomotive, position 2, center sill, lateral acceleration
Channel Name: BL_C2Y

Figure B72. Bullet locomotive, position 2, center sill, vertical acceleration
Channel Name: BL_C2Z
Figure B73. Bullet locomotive, position 3, center sill, longitudinal acceleration
Channel Name: BL_C3X

Figure B74. Bullet locomotive, position 3, center sill, lateral acceleration
Channel Name: BL_C3Y
Figure B75. Bullet locomotive, position 3, center sill, vertical acceleration
Channel Name: BL_C3Z

Figure B76. Target car 1, position 1, center sill, longitudinal acceleration
Channel Name: SH1_C1X
Figure B77. Target car 1, position 2, center sill, longitudinal acceleration
Channel Name: SH1_C2X

Figure B78. Target car 2, position 1, center sill, longitudinal acceleration
Channel Name: SH2_C1X
Figure B79. Target car 2, position 2, center sill, longitudinal acceleration
Channel Name: SH2_C2X

Figure B80. Target locomotive, A truck, longitudinal acceleration
Channel Name: SL_BAX
Figure B81. Target locomotive, A truck, lateral acceleration
Channel Name: SL_BAY

Figure B82. Target locomotive, A truck, vertical acceleration
Channel Name: SL_BAZ
Figure B83. Target locomotive, B truck, longitudinal acceleration
Channel Name: SL_BBX

Figure B84. Target locomotive, B truck, lateral acceleration
Channel Name: SL_BBY
Figure B85. Target locomotive, B truck, vertical acceleration
Channel Name: SL_BBZ

Figure B86. Target locomotive, position 1, center sill, longitudinal acceleration
Channel Name: SL_C1X
Figure B87. Target locomotive, position 1, center sill, lateral acceleration
Channel Name: SL_C1Y

Figure B88. Target locomotive, position 1, center sill, vertical acceleration
Channel Name: SL_C1Z
Figure B89. Target locomotive, position 2, center sill, longitudinal acceleration
Channel Name: SL_C2X

Figure B90. Target locomotive, position 2, center sill, lateral acceleration
Channel Name: SL_C2Y
Figure B91. Target locomotive, position 2, center sill, vertical acceleration
Channel Name: SL_C2Z

Figure B92. Target locomotive, position 3, center sill, longitudinal acceleration
Channel Name: SL_C3X
Figure B93. Target locomotive, position 3, center sill, lateral acceleration
Channel Name: SL_C3Y

Figure B94. Target locomotive, position 3, center sill, vertical acceleration
Channel Name: SL_C3Z
Figure B95. Target locomotive, position 3, cab floor, longitudinal acceleration
Channel Name: SL_F1X

Figure B96. Target locomotive, position 3, cab floor, lateral acceleration
Channel Name: SL_F1Y
Figure B97. Target locomotive, position 3, cab floor, vertical acceleration

Channel Name: SL_F1Z
APPENDIX C

Acceleration Data, Fc = 100 Hz
Figure C1. Bullet car 1. A truck, longitudinal acceleration
Channel Name: B1_BAX

Figure C2. Bullet car 1. A truck, lateral acceleration
Channel Name: B1_BAY
Figure C3. Bullet car 1, A truck, vertical acceleration
Channel Name: B1_BAZ

Figure C4. Bullet car 1, B truck, longitudinal acceleration
Channel Name: B1_BBX
Figure C5. Bullet car 1, B truck, lateral acceleration
Channel Name: B1_BBY

Figure C6. Bullet car 1, B truck, vertical acceleration
Channel Name: B1_BBZ
Figure C7. Bullet car 1, position 2, center sill, longitudinal acceleration
Channel Name: B1_C2X

Figure C8. Bullet car 1, position 2, center sill, lateral acceleration
Channel Name: B1_C2Y
Figure C9. Bullet car 1, position 2, center sill, vertical acceleration
Channel Name: B1_C2Z

Figure C10. Bullet car 1, position 3, center sill, longitudinal acceleration
Channel Name: B1_C3X
Figure C11. Bullet car 1, position 3, center sill, vertical acceleration
Channel Name: B1_C3Z

Figure C12. Bullet car 1, position 4, center sill, longitudinal acceleration
Channel Name: B1_C4X
Figure C13. Bullet car 1, position 4, center sill, lateral acceleration
Channel Name: B1_C4Y

Figure C14. Bullet car 1, position 4, center sill, vertical acceleration
Channel Name: B1_C4Z
Figure C15. Bullet car 1, position 5, center sill, longitudinal acceleration
Channel Name: B1_C5X

Figure C16. Bullet car 1, position 5, center sill, vertical acceleration
Channel Name: B1_C5Z
Figure C17. Bullet car 1, position 6, center sill, longitudinal acceleration
Channel Name: B1_C6X

Figure C18. Bullet car 1, position 6, center sill, lateral acceleration
Channel Name: B1_C6Y
Figure C19. Bullet car 1, position 6, center sill, vertical acceleration
Channel Name: B1_C6Z

Figure C20. Bullet car 1, position 7, center sill, longitudinal acceleration
Channel Name: B1_C7X
Figure C21. Bullet car 1, position 2, left side, vertical acceleration
Channel Name: B1_L2Z

Figure C22. Bullet car 1, position 4, left side, longitudinal acceleration
Channel Name: B1_L4X
Figure C23. Bullet car 1, position 4, left side, vertical acceleration
Channel Name: B1_L4Z

Figure C24. Bullet car 1, position 6, left side, vertical acceleration
Channel Name: B1_L6Z
Figure C25. Bullet car 1, position 2, right side, vertical acceleration
Channel Name: B1_R2Z

Figure C26. Bullet car 1, position 4, right side, longitudinal acceleration
Channel Name: B1_R4X
Figure C27. Bullet car 1, position 4, right side, vertical acceleration
Channel Name: B1_R4Z

Figure C28. Bullet car 1, position 6, right side, vertical acceleration
Channel Name: B1_R6Z
Figure C29. Bullet car 2, A truck, vertical acceleration
Channel Name: B2_BAZ

Figure C30. Bullet car 2, B truck, vertical acceleration
Channel Name: B2_BBZ
Figure C31. Bullet car 2, position 1, center sill, longitudinal acceleration
Channel Name: B2_C1X

Figure C32. Bullet car 2, position 2, center sill, longitudinal acceleration
Channel Name: B2_C2X
Figure C33. Bullet car 2, position 2, center sill, lateral acceleration
Channel Name: B2_C2Y

Figure C34. Bullet car 2, position 2, center sill, vertical acceleration
Channel Name: B2_C2Z
Figure C35. Bullet car 2, position 3, center sill, longitudinal acceleration
Channel Name: B2_C3X

Figure C36. Bullet car 2, position 4, center sill, longitudinal acceleration
Channel Name: B2_C4X
Figure C37. Bullet car 2, position 4, center sill, lateral acceleration
Channel Name: B2_C4Y

Figure C38. Bullet car 2, position 4, center sill, vertical acceleration
Channel Name: B2_C4Z
Figure C39. Bullet car 2, position 5, center sill, longitudinal acceleration
Channel Name: B2_C5X

Figure C40. Bullet car 2, position 6, center sill, longitudinal acceleration
Channel Name: B2_C6X
Figure C41. Bullet car 2, position 6, center sill, lateral acceleration
Channel Name: B2_C6Y

Figure C42. Bullet car 2, position 6, center sill, vertical acceleration
Channel Name: B2_C6Z
Figure C43. Bullet car 2, position 7, center sill, longitudinal acceleration
Channel Name: B2_C7X

Figure C44. Bullet car 2, position 4, left side, longitudinal acceleration
Channel Name: B2_L4X
Figure C45. Bullet car 2, position 4, left side, vertical acceleration
Channel Name: B2_L4Z

Figure C46. Bullet car 2, position 4, right side, longitudinal acceleration
Channel Name: B2_R4X
Figure C47. Bullet car 2, position 4, right side, vertical acceleration
Channel Name: B2_R4Z

Figure C48. Bullet car 3, A truck, vertical acceleration
Channel Name: B3_BAZ
Figure C49. Bullet car 3, B truck, vertical acceleration
Channel Name: B3_BBZ

Figure C50. Bullet car 3, position 1, center sill, longitudinal acceleration
Channel Name: B3_C1X
Figure C51. Bullet car 3, position 2, center sill, longitudinal acceleration
Channel Name: B3_C2X

Figure C52. Bullet car 3, position 2, center sill, lateral acceleration
Channel Name: B3_C2Y
Figure C53. Bullet car 3, position 2, center sill, vertical acceleration
Channel Name: B3_C2Z

Figure C54. Bullet car 3, position 3, center sill, longitudinal acceleration
Channel Name: B3_C3X
Figure C55. Bullet car 3, position 3, center sill, lateral acceleration
Channel Name: B3_C3Y

Figure C56. Bullet car 3, position 3, center sill, vertical acceleration
Channel Name: B3_C3Z
Figure C57. Bullet car 3, position 4, center sill, longitudinal acceleration
Channel Name: B3_C4X

Figure C58. Bullet car 3, position 4, center sill, lateral acceleration
Channel Name: B3_C4Y
Figure C59. Bullet car 3, position 4, center sill, vertical acceleration
Channel Name: B3_C4Z

Figure C60. Bullet car 3, position 5, center sill, longitudinal acceleration
Channel Name: B3_C5X
Figure C61. Bullet car 4, A truck, vertical acceleration
Channel Name: B4_BAZ

Figure C62. Bullet car 4, position 1, center sill, longitudinal acceleration
Channel Name: B4_C1X
Figure C63. Bullet car 4, position 1, center sill, lateral acceleration
Channel Name: B4_C1Y

Figure C64. Bullet car 4, position 1, center sill, vertical acceleration
Channel Name: B4_C1Z
Figure C55. Bullet locomotive, A truck, vertical acceleration
Channel Name: BL_BAZ

Figure C56. Bullet locomotive, B truck, vertical acceleration
Channel Name: BL_BBZ
Figure C67. Bullet locomotive, position 1, center sill, longitudinal acceleration
Channel Name: BL_C1X

Figure C68. Bullet locomotive, position 1, center sill, lateral acceleration
Channel Name: BL_C1Y
Figure C69. Bullet locomotive, position 1, center sill, vertical acceleration
Channel Name: BL_C1Z

Figure C70. Bullet locomotive, position 2, center sill, longitudinal acceleration
Channel Name: BL_C2X
Figure C71. Bullet locomotive, position 2, center sill, lateral acceleration
Channel Name: BL_C2Y

Figure C72. Bullet locomotive, position 2, center sill, vertical acceleration
Channel Name: BL_C2Z
Figure C73. Bullet locomotive, position 3, center sill, longitudinal acceleration
Channel Name: BL_C3X

Figure C74. Bullet locomotive, position 3, center sill, lateral acceleration
Channel Name: BL_C3Y
Figure C75. Bullet locomotive, position 3, center sill, vertical acceleration
Channel Name: BL_C3Z

Figure C76. Target car 1, position 1, center sill, longitudinal acceleration
Channel Name: SH1_C1X
Figure C77. Target car 1, position 2, center sill, longitudinal acceleration
 Channel Name: SH1_C2X

Figure C78. Target car 2, position 1, center sill, longitudinal acceleration
 Channel Name: SH2_C1X
Figure C79. Target car 2, position 2, center sill, longitudinal acceleration
Channel Name: SH2_C2X

Figure C80. Target locomotive, A truck, longitudinal acceleration
Channel Name: SL_BAX
Figure C81. Target locomotive, A truck, lateral acceleration
Channel Name: SL_BAY

Figure C82. Target locomotive, A truck, vertical acceleration
Channel Name: SL_BAZ
Figure C83. Target locomotive, B truck, longitudinal acceleration
Channel Name: SL_BBX

Figure C84. Target locomotive, B truck, lateral acceleration
Channel Name: SL_BBY
Figure C85. Target locomotive, B truck, vertical acceleration
Channel Name: SL_BBZ

Figure C86. Target locomotive, position 1, center sill, longitudinal acceleration
Channel Name: SL_C1X
Figure C87. Target locomotive, position 1, center sill, lateral acceleration
Channel Name: SL_C1Y

Figure C88. Target locomotive, position 1, center sill, vertical acceleration
Channel Name: SL_C1Z
Figure C89. Target locomotive, position 2, center sill, longitudinal acceleration
 Channel Name: SL_C2X

Figure C90. Target locomotive, position 2, center sill, lateral acceleration
 Channel Name: SL_C2Y
Figure C91. Target locomotive, position 2, center sill, vertical acceleration
Channel Name: SL_C2Z

Figure C92. Target locomotive, position 3, center sill, longitudinal acceleration
Channel Name: SL_C3X

C-47
Figure C93. Target locomotive, position 3, center sill, lateral acceleration
Channel Name: SL_C3Y

Figure C94. Target locomotive, position 3, center sill, vertical acceleration
Channel Name: SL_C3Z
Figure C95. Target locomotive, position 3, cab floor, longitudinal acceleration
Channel Name: SL_F1X

Figure C96. Target locomotive, position 3, cab floor, lateral acceleration
Channel Name: SL_F1Y
Figure C97. Target locomotive, position 3, cab floor, vertical acceleration

Channel Name: SL_F1Z
APPENDIX D

Acceleration Data, Fc = 25 Hz
Figure D1. Bullet car 1. A truck, longitudinal acceleration
Channel Name: B1_BAX

Figure D2. Bullet car 1. A truck, lateral acceleration
Channel Name: B1_BAY
Figure D3. Bullet car 1, A truck, vertical acceleration
Channel Name: B1_BAZ

Figure D4. Bullet car 1, B truck, longitudinal acceleration
Channel Name: B1_B6X
Figure D5. Bullet car 1, B truck, lateral acceleration
Channel Name: B1_BBY

Figure D6. Bullet car 1, B truck, vertical acceleration
Channel Name: B1_BBZ
Figure D7. Bullet car 1, position 2, center sill, longitudinal acceleration
Channel Name: B1_C2X

Figure D8. Bullet car 1, position 2, center sill, lateral acceleration
Channel Name: B1_C2Y
Figure D9. Bullet car 1, position 2, center sill, vertical acceleration
Channel Name: B1_C2Z

Figure D10. Bullet car 1, position 3, center sill, longitudinal acceleration
Channel Name: B1_C3X
Figure D11. Bullet car 1, position 3, center sill, vertical acceleration
Channel Name: B1_C3Z

Figure D12. Bullet car 1, position 4, center sill, longitudinal acceleration
Channel Name: B1_C4X
Figure D13. Bullet car 1, position 4, center sill, lateral acceleration
Channel Name: B1_C4Y

Figure D14. Bullet car 1, position 4, center sill, vertical acceleration
Channel Name: B1_C4Z
Figure D15. Bullet car 1, position 5, center sill, longitudinal acceleration
Channel Name: B1_C5X

Figure D16. Bullet car 1, position 5, center sill, vertical acceleration
Channel Name: B1_C5Z
Figure D17. Bullet car 1, position 6, center sill, longitudinal acceleration
Channel Name: B1_C6X

Figure D18. Bullet car 1, position 6, center sill, lateral acceleration
Channel Name: B1_C6Y
Figure D19. Bullet car 1, position 6, center sill, vertical acceleration
Channel Name: B1_C6Z

Figure D20. Bullet car 1, position 7, center sill, longitudinal acceleration
Channel Name: B1_C7X
Figure D21. Bullet car 1, position 2, left side, vertical acceleration
Channel Name: B1_L2Z

Figure D22. Bullet car 1, position 4, left side, longitudinal acceleration
Channel Name: B1_L4X
Figure D23. Bullet car 1, position 4, left side, vertical acceleration
Channel Name: B1_L4Z

Figure D24. Bullet car 1, position 6, left side, vertical acceleration
Channel Name: B1_L6Z
Figure D25. Bullet car 1, position 2, right side, vertical acceleration
Channel Name: B1_R2Z

Figure D26. Bullet car 1, position 4, right side, longitudinal acceleration
Channel Name: B1_R4X
Figure D27. Bullet car 1, position 4, right side, vertical acceleration
Channel Name: B1_R4Z

Figure D28. Bullet car 1, position 6, right side, vertical acceleration
Channel Name: B1_R6Z
Figure D29. Bullet car 2, A truck, vertical acceleration
Channel Name: B2_BAZ

Figure D30. Bullet car 2, B truck, vertical acceleration
Channel Name: B2_BBZ
Figure D31. Bullet car 2, position 1, center sill, longitudinal acceleration
Channel Name: B2_C1X

Figure D32. Bullet car 2, position 2, center sill, longitudinal acceleration
Channel Name: B2_C2X
Figure D33. Bullet car 2, position 2, center sill, lateral acceleration
Channel Name: B2_C2Y

Figure D34. Bullet car 2, position 2, center sill, vertical acceleration
Channel Name: B2_C2Z
Figure D35. Bullet car 2, position 3, center sill, longitudinal acceleration
Channel Name: B2_C3X

Figure D36. Bullet car 2, position 4, center sill, longitudinal acceleration
Channel Name: B2_C4X
Figure D37. Bullet car 2, position 4, center sill, lateral acceleration
Channel Name: B2_C4Y

Figure D38. Bullet car 2, position 4, center sill, vertical acceleration
Channel Name: B2_C4Z
Figure D39. Bullet car 2, position 5, center sill, longitudinal acceleration
Channel Name: B2_C5X

Figure D40. Bullet car 2, position 6, center sill, longitudinal acceleration
Channel Name: B2_C6X
Figure D41. Bullet car 2, position 6, center sill, lateral acceleration
Channel Name: B2_C6Y

Figure D42. Bullet car 2, position 6, center sill, vertical acceleration
Channel Name: B2_C6Z
Figure D43. Bullet car 2, position 7, center sill, longitudinal acceleration
Channel Name: B2_C7X

Figure D44. Bullet car 2, position 4, left side, longitudinal acceleration
Channel Name: B2_L4X
Figure D45. Bullet car 2, position 4, left side, vertical acceleration
Channel Name: B2_L4Z

Figure D46. Bullet car 2, position 4, right side, longitudinal acceleration
Channel Name: B2_R4X
Figure D47. Bullet car 2, position 4, right side, vertical acceleration
Channel Name: B2_R4Z

Figure D48. Bullet car 3, A truck, vertical acceleration
Channel Name: B3_BAZ
Figure D49. Bullet car 3, B truck, vertical acceleration
Channel Name: B3_BBZ

Figure D50. Bullet car 3, position 1, center sill, longitudinal acceleration
Channel Name: B3_C1X
Figure D51. Bullet car 3, position 2, center sill, longitudinal acceleration
Channel Name: B3_C2X

Figure D52. Bullet car 3, position 2, center sill, lateral acceleration
Channel Name: B3_C2Y
Figure D53. Bullet car 3, position 2, center sill, vertical acceleration
Channel Name: B3_C2Z

Figure D54. Bullet car 3, position 3, center sill, longitudinal acceleration
Channel Name: B3_C3X
Figure D55. Bullet car 3, position 3, center sill, lateral acceleration
Channel Name: B3_C3Y

Figure D56. Bullet car 3, position 3, center sill, vertical acceleration
Channel Name: B3_C3Z
Figure D57. Bullet car 3, position 4, center sill, longitudinal acceleration
Channel Name: B3_C4X

Figure D58. Bullet car 3, position 4, center sill, lateral acceleration
Channel Name: B3_C4Y
Figure D59. Bullet car 3, position 4, center sill, vertical acceleration
Channel Name: B3_C4Z

Figure D60. Bullet car 3, position 5, center sill, longitudinal acceleration
Channel Name: B3_C5X
Figure D61. Bullet car 4, A truck, vertical acceleration
Channel Name: B4_BAZ

Figure D62. Bullet car 4, position 1, center sill, longitudinal acceleration
Channel Name: B4_C1X
Figure D63. Bullet car 4, position 1, center sill, lateral acceleration
Channel Name: B4_C1Y

Figure D64. Bullet car 4, position 1, center sill, vertical acceleration
Channel Name: B4_C1Z
Figure D65. Bullet locomotive, A truck, vertical acceleration
Channel Name: BL_BAZ

Figure D66. Bullet locomotive, B truck, vertical acceleration
Channel Name: BL_BBZ
Figure D67. Bullet locomotive, position 1, center sill, longitudinal acceleration
Channel Name: BL_C1X

Figure D68. Bullet locomotive, position 1, center sill, lateral acceleration
Channel Name: BL_C1Y
Figure D69. Bullet locomotive, position 1, center sill, vertical acceleration
Channel Name: BL_C12

Figure D70. Bullet locomotive, position 2, center sill, longitudinal acceleration
Channel Name: BL_C2X
Figure D71. Bullet locomotive, position 2, center sill, lateral acceleration
Channel Name: BL_C2Y

Figure D72. Bullet locomotive, position 2, center sill, vertical acceleration
Channel Name: BL_C2Z
Figure D73. Bullet locomotive, position 3, center sill, longitudinal acceleration
Channel Name: BL_C3X

Figure D74. Bullet locomotive, position 3, center sill, lateral acceleration
Channel Name: BL_C3Y
Figure D75. Bullet locomotive, position 3, center sill, vertical acceleration
Channel Name: BL_C3Z

Figure D76. Target car 1, position 1, center sill, longitudinal acceleration
Channel Name: SH1_C1X
Figure D77. Target car 1, position 2, center sill, longitudinal acceleration
Channel Name: SH1_C2X

Figure D78. Target car 2, position 1, center sill, longitudinal acceleration
Channel Name: SH2_C1X
Figure D79. Target car 2, position 2, center sill, longitudinal acceleration
Channel Name: SH2_C2X

Figure D80. Target locomotive, A truck, longitudinal acceleration
Channel Name: SL_BAX
Figure D81. Target locomotive, A truck, lateral acceleration
Channel Name: SL_BAY

Figure D82. Target locomotive, A truck, vertical acceleration
Channel Name: SL_BAZ
Figure D83. Target locomotive, B truck, longitudinal acceleration
Channel Name: SL_BBX

Figure D84. Target locomotive, B truck, lateral acceleration
Channel Name: SL_BBY
Figure D85. Target locomotive, B truck, vertical acceleration
Channel Name: SL_BBZ

Figure D86. Target locomotive, position 1, center sill, longitudinal acceleration
Channel Name: SL_C1X
Figure D87. Target locomotive, position 1, center sill, lateral acceleration
Channel Name: SL_C1Y

Figure D88. Target locomotive, position 1, center sill, vertical acceleration
Channel Name: SL_C1Z
Figure D89. Target locomotive, position 2, center sill, longitudinal acceleration
Channel Name: SL_C2X

Figure D90. Target locomotive, position 2, center sill, lateral acceleration
Channel Name: SL_C2Y
Figure D91. Target locomotive, position 2, center sill, vertical acceleration
Channel Name: SL_C2Z

Figure D92. Target locomotive, position 3, center sill, longitudinal acceleration
Channel Name: SL_C3X
Figure D93. Target locomotive, position 3, center sill, lateral acceleration

Channel Name: SL_C3Y

Figure D94. Target locomotive, position 3, center sill, vertical acceleration

Channel Name: SL_C3Z
Figure D95. Target locomotive, position 3, cab floor, longitudinal acceleration
Channel Name: SL_F1X

Figure D96. Target locomotive, position 3, cab floor, lateral acceleration
Channel Name: SL_F1Y
Figure D97. Target locomotive, position 3, cab floor, vertical acceleration
Channel Name: SL_F1Z
APPENDIX E

Displacement and Coupler Force Data
Figure E1. Bullet car 1, A truck, left side secondary suspension, displacement

Channel Name: B1_AL

Figure E2. Bullet car 1, A truck, right side secondary suspension, displacement

Channel Name: B1_AR
Figure E3. Bullet car 1, B truck, left side secondary suspension, displacement
Channel Name: B1_BL

Figure E4. Bullet car 1, B truck, right side secondary suspension, displacement
Channel Name: B1_BR
Figure E5. Bullet car 1, B end coupler, longitudinal displacement
Channel Name: B1_CBX

Figure E6. Bullet car 1, B end coupler, lateral displacement
Channel Name: B1_CBY
Figure E7. Bullet car 1, B end coupler, vertical displacement
Channel Name: B1_CBZ

Figure E8. Bullet car 2, A truck, left side secondary suspension, displacement
Channel Name: B2_AL
Figure E9. Bullet car 2, A truck, right side secondary suspension, displacement
Channel Name: B2_AR

Figure E10. Bullet car 2, B truck, left side secondary suspension, displacement
Channel Name: B2_BL
Figure E11. Bullet car 2, B truck, right side secondary suspension, displacement
Channel Name: B2_BR

Figure E12. Bullet car 2, A end coupler, longitudinal displacement
Channel Name: B2_CAX
Figure E13. Bullet car 2, A end coupler, lateral displacement
Channel Name: B2_CAY

Figure E14. Bullet car 2, A end coupler, vertical displacement
Channel Name: B2_CAZ
Figure E15. Bullet car 2, B end coupler, longitudinal displacement
Channel Name: B2_CBX

Figure E16. Bullet car 2, B end coupler, lateral displacement
Channel Name: B2_CBY
Figure E17. Bullet car 2, B end coupler, vertical displacement
Channel Name: B2_CBZ

Figure E18. Bullet car 3, A truck, left side secondary suspension, displacement
Channel Name: B3_AL
Figure E19. Bullet car 3, A truck, right side secondary suspension, displacement
Channel Name: B3_AR

Figure E20. Bullet car 3, B truck, left side secondary suspension, displacement
Channel Name: B3_BL
Figure E21. Bullet car 3, B truck, right side secondary suspension, displacement
Channel Name: B3_BR

Figure E22. Bullet car 3, A end coupler, longitudinal displacement
Channel Name: B3_CAX
Figure E23. Bullet car 3, A end coupler, lateral displacement
Channel Name: B3_CAY

Figure E24. Bullet car 3, A end coupler, vertical displacement
Channel Name: B3_CAZ
Figure E25. Bullet car 3, B end coupler, longitudinal displacement
Channel Name: B3_CBX

Figure E26. Bullet car 3, B end coupler, lateral displacement
Channel Name: B3_CBY
Figure E27. Bullet car 3, B end coupler, vertical displacement
Channel Name: B3_CBZ

Figure E28. Bullet car 4, A end coupler, longitudinal displacement
Channel Name: B4_CAX
Figure E29. Bullet car 4, A end coupler, lateral displacement
Channel Name: B4_CAY

Figure E30. Bullet car 4, A end coupler, vertical displacement
Channel Name: B4_CAZ
Figure E31. Bullet car 1, B end coupler, force measurement
Channel Name: B1_Cload
APPENDIX F

Strain Data
Figure F1. Bullet car 1, cant rail, position 1, left side, strain measurement
Channel Name: B1_CRL1

Figure F2. Bullet car 1, cant rail, position 2, left side, strain measurement
Channel Name: B1_CRL2
Figure F3. Bullet car 1, cant rail, position 3, left side, strain measurement
Channel Name: B1_CRL3

Figure F4. Bullet car 1, cant rail, position 1, right side, strain measurement
Channel Name: B1_CRR1
Figure F5. Bullet car 1, cant rail, position 2, right side, strain measurement
Channel Name: B1_CRR2

Figure F6. Bullet car 1, cant rail, position 3, right side, strain measurement
Channel Name: B1_CRR3
Figure F7. Bullet car 1, center sill, position 1, left side lower, strain measurement
Channel Name: B1_CSL1L

Figure F8. Bullet car 1, center sill, position 1, left side upper, strain measurement
Channel Name: B1_CSL1U
Figure F9. Bullet car 1, center sill, position 2, left side lower, strain measurement
Channel Name: B1_CSL2L

Figure F10. Bullet car 1, center sill, position 2, left side upper, strain measurement
Channel Name: B1_CSL2U
Figure F11. Bullet car 1, center sill, position 3, left side lower, strain measurement
Channel Name: B1_CSL3L

Figure F12. Bullet car 1, center sill, position 3, left side upper, strain measurement
Channel Name: B1_CSL3U
Figure F13. Bullet car 1, center sill, position 1, right side lower, strain measurement
Channel Name: B1_CSR1L

Figure F14. Bullet car 1, center sill, position 1, right side upper, strain measurement
Channel Name: B1_CSR1U
Figure F15. Bullet car 1, center sill, position 2, right side lower, strain measurement
Channel Name: B1_CSR2L

Figure F16. Bullet car 1, center sill, position 2, right side upper, strain measurement
Channel Name: B1_CSR2U
Figure F17. Bullet car 1, center sill, position 3, right side lower, strain measurement
Channel Name: B1_CSR3L

Figure F18. Bullet car 1, center sill, position 3, right side upper, strain measurement
Channel Name: B1_CSR3U
Figure F19. Bullet car 1, side sill, position 1, left side, strain measurement
Channel Name: B1_SSL1

Figure F20. Bullet car 1, side sill, position 2, left side, strain measurement
Channel Name: B1_SSL2
Figure F21. Bullet car 1, side sill, position 3, left side, strain measurement
Channel Name: B1_SSL3

Figure F22. Bullet car 1, side sill, position 1, right side, strain measurement
Channel Name: B1_SSR1
Figure F23. Bullet car 1, side sill, position 2, right side, strain measurement
Channel Name: B1_SSR2

Figure F24. Bullet car 1, side sill, position 3, right side, strain measurement
Channel Name: B1_SSR3
Figure F25. Target locomotive, main sill, position 1, left side lower, strain measurement
Channel Name: SL_MSL1L

Figure F26. Target locomotive, main sill, position 1, left side upper, strain measurement
Channel Name: SL_MSL1U
Figure F27. Target locomotive, main sill, position 2, left side lower, strain measurement
Channel Name: SL_MSL2L

Figure F28. Target locomotive, main sill, position 2, left side upper, strain measurement
Channel Name: SL_MSL2U

F-15
Figure F29. Target locomotive, main sill, position 3, left side lower, strain measurement
Channel Name: SL_MSL3L

Figure F30. Target locomotive, main sill, position 3, left side upper, strain measurement
Channel Name: SL_MSL3U
Figure F31. Target locomotive, main sill, position 1, right side lower, strain measurement
Channel Name: SL_MSR1L

Figure F32. Target locomotive, main sill, position 1, right side upper, strain measurement
Channel Name: SL_MSR1U
Figure F33. Target locomotive, main sill, position 2, right side lower, strain measurement
Channel Name: SL_MSR2L

Figure F34. Target locomotive, main sill, position 2, right side upper, strain measurement
Channel Name: SL_MSR2U
Figure F35. Target locomotive, main sill, position 3, right side lower, strain measurement
Channel Name: SL_MSR3L

Figure F36. Target locomotive, main sill, position 3, right side upper, strain measurement
Channel Name: SL_MSR3U
Figure G1. Bullet car 1, position 2, center sill, longitudinal velocity
Channel Name: B1_C2X_Vel

Figure G2. Bullet car 1, position 3, center sill, longitudinal velocity
Channel Name: B1_C3X_Vel
Figure G3. Bullet car 1, position 4, center sill, longitudinal velocity
Channel Name: B1_C4X_Vel

Figure G4. Bullet car 1, position 5, center sill, longitudinal velocity
Channel Name: B1_C5X_Vel
Figure G5. Bullet car 1, position 6, center sill, longitudinal velocity
Channel Name: B1_C6X_Vel

Figure G6. Bullet car 1, position 7, center sill, longitudinal velocity
Channel Name: B1_C7X_Vel
Figure G7. Bullet car 2, position 1, center sill, longitudinal velocity
Channel Name: B2_C1X_Vel

Figure G8. Bullet car 2, position 2, center sill, longitudinal velocity
Channel Name: B2_C2X_Vel
Figure G9. Bullet car 2, position 3, center sill, longitudinal velocity
Channel Name: B2_C3X_Vel

Figure G10. Bullet car 2, position 4, center sill, longitudinal velocity
Channel Name: B2_C4X_Vel
Figure G11. Bullet car 2, position 5, center sill, longitudinal velocity
Channel Name: B2_C5X_Vel

Figure G12. Bullet car 2, position 6, center sill, longitudinal velocity
Channel Name: B2_C6X_Vel
Figure G13. Bullet car 2, position 7, center sill, longitudinal velocity
Channel Name: B2_C7X_Vel

Figure G14. Bullet car 3, position 1, center sill, longitudinal velocity
Channel Name: B3_C1X_Vel
Figure G15. Bullet car 3, position 2, center sill, longitudinal velocity
Channel Name: B3_C2X_Vel

Figure G16. Bullet car 3, position 3, center sill, longitudinal velocity
Channel Name: B3_C3X_Vel
Figure G17. Bullet car 3, position 4, center sill, longitudinal velocity
Channel Name: B3_C4X_Vel

Figure G18. Bullet car 3, position 5, center sill, longitudinal velocity
Channel Name: B3_C5X_Vel
Figure G19. Bullet car 4, position 1, center sill, longitudinal velocity
Channel Name: B4_C1X_Vel

Figure G20. Bullet locomotive, position 1, center sill, longitudinal velocity
Channel Name: BL_C1X_Vel
Figure G21. Bullet locomotive, position 2, center sill, longitudinal velocity
Channel Name: BL_C2X_Vel

Figure G22. Bullet locomotive, position 3, center sill, longitudinal velocity
Channel Name: BL_C3X_Vel
APPENDIX H

Camera Set-up Sheets
High-Speed Film Camera Set Up

<table>
<thead>
<tr>
<th>Location</th>
<th>Camera View</th>
<th>Camera Type</th>
<th>Camera Serial #</th>
<th>Frame Rate</th>
<th>Lens (mm)</th>
<th>Lens Serial #</th>
<th>F-stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Westside-Overall</td>
<td>Milliken</td>
<td>7332-1</td>
<td>300</td>
<td>16</td>
<td>570</td>
<td>4.5</td>
</tr>
<tr>
<td>F2</td>
<td>Overhead-Impact</td>
<td>Milliken</td>
<td>6893</td>
<td>500</td>
<td>10</td>
<td>050</td>
<td>4.0</td>
</tr>
<tr>
<td>F3</td>
<td>Eastside-Overall</td>
<td>Milliken</td>
<td>6970</td>
<td>300</td>
<td>25</td>
<td>894154</td>
<td>4.5</td>
</tr>
<tr>
<td>F4</td>
<td>Eastside</td>
<td>Milliken</td>
<td>7169</td>
<td>300</td>
<td>25</td>
<td>6821</td>
<td>4.5</td>
</tr>
<tr>
<td>F5</td>
<td>Eastside</td>
<td>Milliken</td>
<td>7341</td>
<td>300</td>
<td>25</td>
<td>882012</td>
<td>4.5</td>
</tr>
<tr>
<td>F6</td>
<td>Eastside</td>
<td>Milliken</td>
<td>7486</td>
<td>300</td>
<td>25</td>
<td>14512</td>
<td>4.5</td>
</tr>
<tr>
<td>F7</td>
<td>Eastside</td>
<td>Milliken</td>
<td>7348</td>
<td>300</td>
<td>12</td>
<td>pen.-tv</td>
<td>4.5</td>
</tr>
<tr>
<td>F8</td>
<td>Overhead-Rear</td>
<td>Milliken</td>
<td>7410</td>
<td>300</td>
<td>25</td>
<td>-</td>
<td>4.5</td>
</tr>
<tr>
<td>F9</td>
<td>Eastside-Panning</td>
<td>Milliken</td>
<td>6967-1</td>
<td>120</td>
<td>25</td>
<td>048</td>
<td>8.0</td>
</tr>
<tr>
<td>F10</td>
<td>Eastside-Panning</td>
<td>Locam</td>
<td>1280</td>
<td>500</td>
<td>50</td>
<td>3853</td>
<td>4.0</td>
</tr>
</tbody>
</table>

High Speed Film Camera Set-up

<table>
<thead>
<tr>
<th>Location</th>
<th>Camera View</th>
<th>Camera Type</th>
<th>Camera Serial #</th>
<th>Frame Rate</th>
<th>Lens (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>Overhead-Impact</td>
<td>Hi-8</td>
<td>240</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>V2</td>
<td>Overhead-Rear View</td>
<td>Hi-8</td>
<td>026</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>V3</td>
<td>Overhead-Front View</td>
<td>Hi-8</td>
<td>248</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>V4</td>
<td>Southeast-Angle View</td>
<td>Hi-8</td>
<td>044</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>V5</td>
<td>Eastside-Overall View</td>
<td>8mm</td>
<td>868</td>
<td>30</td>
<td>w/a lens</td>
</tr>
<tr>
<td>V6</td>
<td>Eastside-Panning</td>
<td>S-VHS</td>
<td>259</td>
<td>30</td>
<td>8</td>
</tr>
<tr>
<td>V7</td>
<td>Northeast-Angle View</td>
<td>3ccd-dig.</td>
<td>455</td>
<td>30</td>
<td>4.2</td>
</tr>
<tr>
<td>V8</td>
<td>Overhead-Rear View</td>
<td>Hi-8</td>
<td>321</td>
<td>30</td>
<td>3.6</td>
</tr>
<tr>
<td>V9</td>
<td>Northwest-Angle View</td>
<td>VHS</td>
<td>223</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>V10</td>
<td>Westside-View</td>
<td>Dig.8</td>
<td>759</td>
<td>30</td>
<td>3.7</td>
</tr>
<tr>
<td>V11</td>
<td>Westside-Panning</td>
<td>DV</td>
<td>-</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>V12</td>
<td>Westside-Panning HS</td>
<td>DV</td>
<td>167</td>
<td>120</td>
<td>5.0</td>
</tr>
<tr>
<td>V13</td>
<td>Westside-Overall View</td>
<td>Hi-8</td>
<td>701</td>
<td>30</td>
<td>w/a lens</td>
</tr>
<tr>
<td>V14</td>
<td>Westside-View</td>
<td>Dig.8</td>
<td>690</td>
<td>30</td>
<td>3.7</td>
</tr>
<tr>
<td>V15</td>
<td>Southwest-Angle View</td>
<td>Hi-8</td>
<td>857</td>
<td>30</td>
<td>3.6</td>
</tr>
</tbody>
</table>