NCDOT Research Project 2015-18:
Reduction in Railroad Right-of-Way Trespassing Incidents

2015 Right of Way Fatality and Trespass Prevention Workshop

Christopher Cunningham, PE, MCE
Traffic Systems Innovation Program Manager
Institute for Transportation Research and Education

August 4 – 6, 2015
Disclaimer

The contents of this report reflect the views of the Author(s) and not necessarily the views of the University. The Author(s) is/are responsible for the fact and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of either the North Carolina Department of Transportation or the Federal Highway Administration. This presentation does not constitute a standard, specification, or regulation.
Background and Motivation

- USDOT Secretary Ray LaHood – railroad trespassing “one of the most vexing safety issues that the industry faces”
 - 430+ trespass-related pedestrian fatalities annually in the US
 - N.C. ranks eighth in pedestrian fatalities – 90 pedestrians have been killed or injured since January 2010

- Determine actions need to be taken to prevent trespassing incidents
 - Supplementing the current educational and enforcement programs being implemented
Map of Trespasser Fatalities (NC)
June 2011 to December 2015 [Link]

http://www.itre.ncsu.edu
Project Objectives

• Provide NCDOT Rail with information to make decisions on how, when, and where to enforce rail-trespassing events through two aspects...
 1. Prediction
 2. Detection
Prediction

• Deliverable
 – Create clear maps which portray locations where rail trespassing has the highest probability to take place

• How?
 – Develop model used to determine risk of segments of Charlotte to Raleigh corridor
 – Ensure the model is transferable
Prediction Model Methodology

• Sort Historic Data
 – Number of Strikes
 – Train Crew Rating
 – Other Evidence
• Divide the Corridor into Segments
• Geospatial Analysis
Historic Data

- Data categorized into three types
 - Count
 - Scalar
 - Binary
- Evident data (FRA strikes)
- Predictive data (demographics)

<table>
<thead>
<tr>
<th>DATA SET</th>
<th>DATA SOURCE</th>
<th>TYPE</th>
<th>EVIDENCE / PREDICTIVE</th>
<th>INFLUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRIKES</td>
<td>FRA & NCDOT Records</td>
<td>Count</td>
<td>Evidence</td>
<td>(+++) Most objective measure of previous/current problem areas</td>
</tr>
<tr>
<td>TRAIN CREW SURVEYS</td>
<td>Amtrak Crews</td>
<td>Scalar</td>
<td>Evidence</td>
<td>(+) First-hand account of problematic areas</td>
</tr>
<tr>
<td>CORRIDOR VIDEO REVIEW</td>
<td>NCDOT Video</td>
<td>Binary</td>
<td>Evidence</td>
<td>(+) Visual evidence of paths, graffiti, or camps</td>
</tr>
<tr>
<td>GRADE CROSSINGS</td>
<td>FRA Grade Crossing Data</td>
<td>Count</td>
<td>Predictive</td>
<td>(+) Crossings provide access to the right-of-way</td>
</tr>
<tr>
<td>TRAIN VOLUME</td>
<td>FRA Grade Crossing Data</td>
<td>Scalar</td>
<td>Predictive</td>
<td>(+) Train volume determines the exposure on the tracks</td>
</tr>
<tr>
<td>TRAIN SPEED</td>
<td>FRA Grade Crossing Data</td>
<td>Scalar</td>
<td>Predictive</td>
<td>(+) Faster trains reduces the time to detect and avoid the train</td>
</tr>
<tr>
<td>FENCING</td>
<td>Video Review</td>
<td>Binary</td>
<td>Predictive</td>
<td>(-) Fencing should reduce access</td>
</tr>
<tr>
<td>PASSENGER STATIONS</td>
<td>NC Rail Facilities Shapefile</td>
<td>Binary</td>
<td>Predictive</td>
<td>(+) Stations inherently cause people to be near the tracks</td>
</tr>
<tr>
<td>POPULATION DENSITY</td>
<td>2013 US Census Parcel Data</td>
<td>Scalar</td>
<td>Predictive</td>
<td>(+) More people are near the tracks</td>
</tr>
<tr>
<td>HOUSEHOLD INCOME</td>
<td>2013 US Census Parcel Data</td>
<td>Scalar</td>
<td>Predictive</td>
<td>(-) People typically drive more with increased wealth</td>
</tr>
<tr>
<td>PUBLIC SCHOOLS</td>
<td>County GIS Data / Online Maps</td>
<td>Count</td>
<td>Predictive</td>
<td>(+) Young people are not risk averse, and likely to take short cuts</td>
</tr>
<tr>
<td>COLLEGE / UNIVERSITIES</td>
<td>Online Maps</td>
<td>Count</td>
<td>Predictive</td>
<td>(+) Young people are not risk averse, and likely to take short cuts</td>
</tr>
<tr>
<td>COMMERCIAL SERVICES</td>
<td>County Tax Parcels</td>
<td>Count</td>
<td>Predictive</td>
<td>(+) Food & drink service generates pedestrian traffic</td>
</tr>
</tbody>
</table>
Segments: Window Sizes

Note: For illustration purposes only
Geospatial Analysis: Greensboro, NC
Prediction Model Results

• The model was applied to the Charlotte to Raleigh corridor
• Highest Risk Areas
 – Durham (April 5, 2015)
 – Elon / Burlington (Jan. 27, 2015)
 – Greensboro (July 30, 2014)
Detection

• Deliverable
 – Test and implement a prototype detection system that will provide real time trespassing information to rail personnel

• How?
 – Equipment selection
 – Installation and algorithm development
 – Implementation at sites determined by prediction model
Equipment Selection: Pros and Cons

• Visible Light Camera
 – Advantage: cost-effective

• Thermal Imaging Camera*
 – Advantage: can collect data in tough conditions, new detection software easily compatible

• Software Capabilities
 – Have a compatible software system for ease of use
Video Detection Examples
Installation and Algorithm Development

• Set up a test site at controlled locations
 • NCDOT Rail Yard
 • Centennial Campus
Algorithm Example
Implementation in the Field

- Pedestrian without a train
- Train without pedestrian
- Both pedestrian and train
Future Applications

- Develop a system that can be implemented anywhere in the United States
Key Project Outcomes

- Recommendation for the most appropriate method for determining trespass-prone locations
- Determine the efficiency and accuracy of detection software and hardware for determining trespass events along railroad ROW
- Determine the feasibility and capability of providing real-time information to railroad and safety personnel regarding trespass events in order to help prevent incidents from occurring
Questions?
For Additional Information Concerning this Presentation.

Please contact Chris Cunningham @cmcunnin@ncsu.edu